Abstract

A computer-controllable variable optical attenuator has been developed and tested that has a wide dynamic range, wide spectral range, and is suitable for applications with high peak and average power laser sources. The device is based on Fresnel transmission through two pairs of wedged plates. A 35-dB dynamic range, an insertion loss of 1%, a precision of better than 1% and beam offset and deflection of <0.5 mm and 0.5 mrad, respectively, are demonstrated.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  2. T. Osehi, S. Saito, Appl. Opt. 10, 144 (1971).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1975), p. 42.

1971 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1975), p. 42.

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Osehi, T.

Saito, S.

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1975), p. 42.

Appl. Opt. (1)

Other (2)

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1975), p. 42.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of wedged-plate attenuator optical layout. Axes of rotation are shown near base of incident and exit prisms.

Fig. 2
Fig. 2

Maximum attenuation vs aperture ratio l for n = 1.45,1.0% maximum interference in Brewster polarization (see text).

Fig. 3
Fig. 3

Normalized wedge spacing s, normalized wedge overlap d, and wedge angle α for the specifications of Fig. 2.

Fig. 4
Fig. 4

Schematic of optical and electrical system used for attenuator calibration measurements.

Fig. 5
Fig. 5

Measured transmittance TN = 0.6 sin(/200) vs stepper motor position N: ●, data points; —, theoretical transmittance; rms error is 0.008.

Fig. 6
Fig. 6

Attenuation in dB vs angle from critical angle for incident He–Ne beam polarized perpendicular to the plane of incidence: ●, measured data points; —, theoretical attenuation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T S ( θ i , n ) = sin ( 2 θ i ) sin ( 2 θ t ) sin 2 ( θ i + θ t ) ,
T S ( θ i , n ) = T S ( θ i , n ) cos 2 ( θ i θ t ) ,
n sin θ t = sin θ i
T w ( θ i , n , α ) = T s ( θ i , n ) T S ( θ i + α , 1 / n ) ,
T = [ T w ( θ i , n , α ) ] 4 .
sin θ i crit = n sin ( u α ) ; where n sin u 1 .
Δ a a 2 cos 2 θ i cos 3 θ t 2 Δ θ i ,
sin θ t 2 = n sin ( α + υ ) ,
n sin υ = sin θ i ,
α = u w ,
sin w = 1 / n sin ( arcsec l ) .
I = r 2 ( θ t 2 ) ( 1 2 s tan θ t 2 cos θ i )
d = 1 / cos θ i s tan θ t 2
tan θ t 2 [ ( l d ) / s ] .
= [ i ( x i exp x i theory ) 2 n 1 ] 1 / 2 = 0.008 .

Metrics