Abstract

Information theory is applied to the problem of solar radiation collection. We find that the optimum solar concentrator corresponds to a perfect imaging system, i.e., one that images the entire sky on the absorber with no aberrations. For a nonisotropic distribution of radiation at the collector aperture, many thermally separated absorber segments are necessary at the absorber for optimum performance. The heat transfer fluid is first passed through the warm segments and then passed sequentially through the progressively hotter segments.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. McDaniels, The Sun: Our Future Energy Source (Wiley, New York, 1979), pp. 67, 68.
  2. R. Winston, Sol. Energy 16, 89 (1974).
    [Crossref]
  3. R. Winston, J. Opt. Soc. Am. 60, 245 (1970).
    [Crossref]
  4. H. S. Robertson, in Proceedings, Solar Cooling and Heating Forum, December 1976, Miami Beach, T. N. Veziroglu, Ed. (Hemisphere, Washington, D.C., 1978), Vol. 2, p. 377.
  5. F. M. Reza, An Introduction to Information Theory (McGraw-Hill, New York, 1961), passim.
  6. A. J. Lichtenberg, Phase-Space Dynamics of Particles (Wiley, New York, 1969), p. 14.
  7. R. P. Patera, “Information Theory Applied to Solar Radiation Concentrators,” Dissertation, U. Miami (1979), pp. 156–160.

1974 (1)

R. Winston, Sol. Energy 16, 89 (1974).
[Crossref]

1970 (1)

Lichtenberg, A. J.

A. J. Lichtenberg, Phase-Space Dynamics of Particles (Wiley, New York, 1969), p. 14.

McDaniels, D. K.

D. K. McDaniels, The Sun: Our Future Energy Source (Wiley, New York, 1979), pp. 67, 68.

Patera, R. P.

R. P. Patera, “Information Theory Applied to Solar Radiation Concentrators,” Dissertation, U. Miami (1979), pp. 156–160.

Reza, F. M.

F. M. Reza, An Introduction to Information Theory (McGraw-Hill, New York, 1961), passim.

Robertson, H. S.

H. S. Robertson, in Proceedings, Solar Cooling and Heating Forum, December 1976, Miami Beach, T. N. Veziroglu, Ed. (Hemisphere, Washington, D.C., 1978), Vol. 2, p. 377.

Winston, R.

J. Opt. Soc. Am. (1)

Sol. Energy (1)

R. Winston, Sol. Energy 16, 89 (1974).
[Crossref]

Other (5)

D. K. McDaniels, The Sun: Our Future Energy Source (Wiley, New York, 1979), pp. 67, 68.

H. S. Robertson, in Proceedings, Solar Cooling and Heating Forum, December 1976, Miami Beach, T. N. Veziroglu, Ed. (Hemisphere, Washington, D.C., 1978), Vol. 2, p. 377.

F. M. Reza, An Introduction to Information Theory (McGraw-Hill, New York, 1961), passim.

A. J. Lichtenberg, Phase-Space Dynamics of Particles (Wiley, New York, 1969), p. 14.

R. P. Patera, “Information Theory Applied to Solar Radiation Concentrators,” Dissertation, U. Miami (1979), pp. 156–160.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Solar collector as information channel.

Fig. 2
Fig. 2

Two-dimensional slice of 4-D phase space.

Fig. 3
Fig. 3

Phase space at collector aperture for troughlike collector. Direct solar component is shown explicitly.

Fig. 4
Fig. 4

Phase space at absorber for perfect troughlike collector channel.

Fig. 5
Fig. 5

Cross section of rectangular trough flat plate collector. Absorber segments a and b have unit width. Verticle partitions have mirror surfaces. Assuming no loss due to reflection, all light entering the aperture strikes the absorber. Direct solar component irradiates absorbers unequally.

Fig. 6
Fig. 6

Phase space at the absorber when X = 1. Half of the direct solar component has undergone one reflection.

Tables (1)

Tables Icon

Table I Concentrations of Direct Solar Component on Segments a and b as Functions of X

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

C < ̅ 1 / sin θ ;
C < ̅ 1 / sin 2 θ .
I a = S a m S a ,
I b = S b m S b ,
I b I a ,
S a = i a i ln a i i a i ln ( Δ P x , Δ P y A i ) ln ( Δ x , Δ y A ) ,
Δ P x Δ x h ,
Δ P y Δ y h .
S b = b j ln b j b j ln ( Δ x , Δ y B j ) ln ( Δ P x , Δ P y π p 2 ) ,
S a m = a i ln ( Δ P x , Δ P y Δ x , Δ y A π p 2 ) ,
S b m = b i ln ( Δ P x , Δ P y Δ x , Δ y A π p 2 ) .
I a = i a i ln ( a i π p 2 A i ) ,
I b = b j ln ( b j A B j ) .
b ln ( b A B ) I b a i ln ( a i π p 2 A i ) ,
b = j b j and B = j B j .
n d = h / ( a + b ) = 1.15 .

Metrics