Abstract

Aerosol sampling is a complicated problem in aerosol physics. A technique described to monitor continuously the mass concentration of monodisperse test aerosols using a He–Ne laser. Good approximations are possible from Mie theory. The method is fast, accurate, and eliminates the need for precalibration of a standard sampler to monitor aerosol mass concentration over increments of time. It can be used for sampler efficiency measurements and wherever it is desired to monitor test aerosols of spherical droplets continuously, e.g., in studies of the human respiratory system for droplets larger than a few micrometers.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. Davies, Brit. J. Appl. Phys. (J. Phys. D:) 1, 921 (1968).
    [CrossRef]
  2. G. Mie, Ann. Physik 25, 377 (1908).
    [CrossRef]
  3. H. R. Carlon, M. E. Milham, R. H. Frickel, Appl. Opt. 15, 2454 (1976).
    [CrossRef] [PubMed]
  4. H. R. Carlon, Appl. Opt. 18, 1372 (1979).
    [CrossRef] [PubMed]
  5. W. H. Walton, W. C. Prewett, Proc. Phys. Soc. London Sect. B 62, 341 (1949).
    [CrossRef]
  6. The Berglund-Liu monodisperse aerosol generator is marketed by Thermo-Systems, Inc. (TSI), P.O. Box 3394, St. Paul, Minnesota 55165.
  7. Microspheres of glass, polystyrene, and other materials are available from Duke Scientific Corp., 445 Sherman Avenue, Palo Alto, Calif. 94306.
  8. H. R. Carlon, D. H. Anderson, M. E. Milham, T. L. Tarnove, R. H. Frickel, I. Sindoni, Appl. Opt. 16, 1598 (1977).
    [CrossRef] [PubMed]

1979 (1)

1977 (1)

1976 (1)

1968 (1)

C. N. Davies, Brit. J. Appl. Phys. (J. Phys. D:) 1, 921 (1968).
[CrossRef]

1949 (1)

W. H. Walton, W. C. Prewett, Proc. Phys. Soc. London Sect. B 62, 341 (1949).
[CrossRef]

1908 (1)

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Anderson, D. H.

Carlon, H. R.

Davies, C. N.

C. N. Davies, Brit. J. Appl. Phys. (J. Phys. D:) 1, 921 (1968).
[CrossRef]

Frickel, R. H.

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Milham, M. E.

Prewett, W. C.

W. H. Walton, W. C. Prewett, Proc. Phys. Soc. London Sect. B 62, 341 (1949).
[CrossRef]

Sindoni, I.

Tarnove, T. L.

Walton, W. H.

W. H. Walton, W. C. Prewett, Proc. Phys. Soc. London Sect. B 62, 341 (1949).
[CrossRef]

Ann. Physik (1)

G. Mie, Ann. Physik 25, 377 (1908).
[CrossRef]

Appl. Opt. (3)

Brit. J. Appl. Phys. (J. Phys. D:) (1)

C. N. Davies, Brit. J. Appl. Phys. (J. Phys. D:) 1, 921 (1968).
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

W. H. Walton, W. C. Prewett, Proc. Phys. Soc. London Sect. B 62, 341 (1949).
[CrossRef]

Other (2)

The Berglund-Liu monodisperse aerosol generator is marketed by Thermo-Systems, Inc. (TSI), P.O. Box 3394, St. Paul, Minnesota 55165.

Microspheres of glass, polystyrene, and other materials are available from Duke Scientific Corp., 445 Sherman Avenue, Palo Alto, Calif. 94306.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Values of α0.63 vs Dμ calculated from the Mie theory for liquids listed in Table I.

Fig. 2
Fig. 2

Values of αλ vs Dμ calculated from the Mie theory for dimethyl phthalate (DMP), using the sodium D line refractive index measured at its wavelength of 0.589 μm (dashed curve) and assuming the same index at the He–Ne laser wavelength of 0.63 μm (solid curve).

Fig. 3
Fig. 3

Values of α0.63 vs Dμ calculated from the Mie theory for dioctyl phthalate (DOP).

Fig. 4
Fig. 4

Schematic representation of the experimental setup. Although an aerosol cloud is shown coming from the generator in the test chamber for illustrative purposes, the chamber was stirred to ensure uniform aerosol mixing during testing since the laser beam must be uniformly filled with the test aerosol for accurate monitoring.

Fig. 5
Fig. 5

Typical sampling efficiencies for DOP test aerosols are shown by the solid curve labeled Aspirated Sampler No. 1 and by the dashed curve labeled Aspirated Sampler No. 2. The figure also illustrates the methodology of the measurements, as described in the text.

Tables (1)

Tables Icon

Table I Liquids Used to Generate Test Aerosols

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α λ = [ 3 ( Q ) λ ] / ( 2 D μ · ρ ) ,
α λ 3 / ( D μ · ρ ) .
ln ( 1 / T λ ) = α λ C L ,
C = 1 α λ · L ln ( 1 / T λ ) D μ · ρ 3 L ln ( 1 / T λ ) .
α 0.63 3 / D μ ,
C D μ 3 L ln ( 1 / T 0.63 ) .

Metrics