Abstract

No abstract available.

Full Article  |  PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Beam geometry in the presence of a diagonal wind. Note that y-axis is normal to the plane of the paper.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T ( X 0 , Y 0 , Z 0 ) = α C p ( V cos θ ) X 0 I ( X , Y 0 , Z 0 ) dX .
Z = Z 0 ( X 0 X ) tan θ ,
X M = ( Z 0 X 0 tan θ ) cot θ = X 0 Z 0 cot θ ,
T ( X 0 , Y 0 , Z 0 ) = α C p ( V cos θ ) ( X 0 Z 0 cot θ ) X 0 I { X , Y 0 , [ Z 0 ( X 0 X ) tan θ ] } dX .
T ( X 0 , Y 0 , Z 0 ) = α VC p X min X 0 I ( X , Y 0 , Z 0 ) dX ,
X = X cos θ Z sin θ Z = Z cos θ + X sin θ .
Z 0 cos θ + X sin θ = Z 0 X 0 ( sin θ cos θ + sin 2 θ tan θ ) + X tan θ , = Z 0 + ( X X 0 ) tan θ .
T ( X 0 , Y 0 , Z 0 ) = α C p ( V cos θ ) X 0 Z 0 cot θ X 0 I { X , Y 0 , [ Z 0 ( X 0 X ) tan θ ] } dX .
T ( X 0 , Y 0 , Z 0 ) = α VC p 0 Z 0 I ( X 0 , Y 0 , Z ) dZ ,
α C p V ϵ X 0 Z ϵ X 0 I { X , Y 0 , [ Z 0 ( X X 0 ) ϵ ] } dX .

Metrics