Abstract

A new incoherent optical approach to an important digital signal processing problem in radio astronomy is presented. It greatly simplifies the many thousands of 1-bit digital cross-correlations that can be required by using a digitally controlled light panel and photodiode array.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Brouw, “Aperture Synthesis,” in Methods in Computation Physics, Vol. 14, B. Alder, S. Fernbach, M. Rotenberg, Eds. (Academic, New York, 1975), p. 131.
  2. T. W. Cole, J. Opt. Soc. Am. 69, 4 (1979).
    [CrossRef]
  3. B. F. C. Cooper, “Autocorrelation Spectrometers,” in Methods of Experimental Physics, Vol. 12, Part B, M. L. Meeks, Ed. (Academic, New York, 1976), p. 289.
  4. C. H. Sequin, M. F. Tompsett, Advances in Electronic and Electron Physics, Suppl. 8 (Academic, New York, 1975).
  5. T. W. Cole, Electron. Lett. 16, 86 (1980).
    [CrossRef]
  6. J. A. Hogbom, W. N. Brouw, Astron. Astrophys. 33, 289 (1974).
  7. J. P. Wild, Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).
  8. D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).
  9. G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

1980

T. W. Cole, Electron. Lett. 16, 86 (1980).
[CrossRef]

1979

D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).

T. W. Cole, J. Opt. Soc. Am. 69, 4 (1979).
[CrossRef]

1974

G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

J. A. Hogbom, W. N. Brouw, Astron. Astrophys. 33, 289 (1974).

1967

J. P. Wild, Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).

Beard, M.

D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).

Bos, A.

D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).

Brouw, W. N.

J. A. Hogbom, W. N. Brouw, Astron. Astrophys. 33, 289 (1974).

W. N. Brouw, “Aperture Synthesis,” in Methods in Computation Physics, Vol. 14, B. Alder, S. Fernbach, M. Rotenberg, Eds. (Academic, New York, 1975), p. 131.

Cole, T. W.

T. W. Cole, Electron. Lett. 16, 86 (1980).
[CrossRef]

T. W. Cole, J. Opt. Soc. Am. 69, 4 (1979).
[CrossRef]

Cooper, B. F. C.

B. F. C. Cooper, “Autocorrelation Spectrometers,” in Methods of Experimental Physics, Vol. 12, Part B, M. L. Meeks, Ed. (Academic, New York, 1976), p. 289.

Donjon, J.

G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

Hazan, J.-P.

G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

Hogbom, J. A.

J. A. Hogbom, W. N. Brouw, Astron. Astrophys. 33, 289 (1974).

Marie, G.

G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

McLean, D. J.

D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).

Sequin, C. H.

C. H. Sequin, M. F. Tompsett, Advances in Electronic and Electron Physics, Suppl. 8 (Academic, New York, 1975).

Tompsett, M. F.

C. H. Sequin, M. F. Tompsett, Advances in Electronic and Electron Physics, Suppl. 8 (Academic, New York, 1975).

Wild, J. P.

J. P. Wild, Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).

Adv. Image Pickup Display

G. Marie, J. Donjon, J.-P. Hazan, Adv. Image Pickup Display 1, 225 (1974).

Astron. Astrophys.

J. A. Hogbom, W. N. Brouw, Astron. Astrophys. 33, 289 (1974).

Electron. Lett.

T. W. Cole, Electron. Lett. 16, 86 (1980).
[CrossRef]

J. Opt. Soc. Am.

Proc. Astron. Soc. Aust.

D. J. McLean, M. Beard, A. Bos, Proc. Astron. Soc. Aust. 3, 371 (1979).

Proc. Inst. Radio Electron. Eng. Aust.

J. P. Wild, Proc. Inst. Radio Electron. Eng. Aust. 28, 277 (1967).

Other

B. F. C. Cooper, “Autocorrelation Spectrometers,” in Methods of Experimental Physics, Vol. 12, Part B, M. L. Meeks, Ed. (Academic, New York, 1976), p. 289.

C. H. Sequin, M. F. Tompsett, Advances in Electronic and Electron Physics, Suppl. 8 (Academic, New York, 1975).

W. N. Brouw, “Aperture Synthesis,” in Methods in Computation Physics, Vol. 14, B. Alder, S. Fernbach, M. Rotenberg, Eds. (Academic, New York, 1975), p. 131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Processor for the linear compound array shown at the top in which signals from all four telescopes A, B, C, D are correlated against those from all ten telescopes 0, 1,… 9 can be arranged in several ways. Both linear and rectangular arrangements are shown with LED/resistor combinations connected between each row and column.

Fig. 2
Fig. 2

For a cross or T-shaped array, the spatial frequencies are sampled on a rectangular matrix. The resulting matrix processor for either real or imaginary correlations is shown for a T-shaped array of 14 elements.

Fig. 3
Fig. 3

Circular geometry of the Culgoora array samples the spatial frequency plane as shown for a 48-element ring. LEDs distributed in this pattern faithfully display the sampled spatial frequency plane.

Fig. 4
Fig. 4

Circuit of an 8- × 16-element light panel is outlined. Switches permit choice of correlation or anticorrelation and overcome the unipolar nature of the LED.

Fig. 5
Fig. 5

LED processor plane showing correlations (a) and (c) and anticorrelations (b) and (d) for two source directions with respect to the T-shaped antenna plane. The resulting spatial frequency fringes are clearly seen and are related by Fourier transformation to the source distribution.

Metrics