Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Shajenko, E. L. Green, Appl. Opt. 19, 1895 (1980).
    [CrossRef]
  2. Ithaca Research Corp., Electro-Scan Tuner model LS-14.
  3. C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
    [CrossRef]
  4. A. Olsson, C. L. Tang, IEEE J. Quantum Electron. QE-15, 1085 (1979).(Since publication of Refs. 3 and 4, the tuning range for the semiconductor laser has been extended to 290 Å by mechanical means, and work is in progress to demonstrate a similar electrooptic tuning range.)
    [CrossRef]
  5. J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
    [CrossRef]
  6. G. E. Moss, L. R. Miller, R. L. Forward, Appl. Opt. 10, 2495 (1971).
    [CrossRef] [PubMed]

1980

1979

A. Olsson, C. L. Tang, IEEE J. Quantum Electron. QE-15, 1085 (1979).(Since publication of Refs. 3 and 4, the tuning range for the semiconductor laser has been extended to 290 Å by mechanical means, and work is in progress to demonstrate a similar electrooptic tuning range.)
[CrossRef]

1977

C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
[CrossRef]

1975

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

1971

Ballantyne, J. M.

C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
[CrossRef]

Forward, R. L.

Green, E. L.

Kreismanis, V. G.

C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
[CrossRef]

Miller, L. R.

Moss, G. E.

Olsson, A.

A. Olsson, C. L. Tang, IEEE J. Quantum Electron. QE-15, 1085 (1979).(Since publication of Refs. 3 and 4, the tuning range for the semiconductor laser has been extended to 290 Å by mechanical means, and work is in progress to demonstrate a similar electrooptic tuning range.)
[CrossRef]

Shajenko, P.

Tang, C. L.

A. Olsson, C. L. Tang, IEEE J. Quantum Electron. QE-15, 1085 (1979).(Since publication of Refs. 3 and 4, the tuning range for the semiconductor laser has been extended to 290 Å by mechanical means, and work is in progress to demonstrate a similar electrooptic tuning range.)
[CrossRef]

C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
[CrossRef]

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

Telle, J. M.

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. M. Telle, C. L. Tang, Appl. Phys. Lett. 26, 572 (1975).
[CrossRef]

C. L. Tang, V. G. Kreismanis, J. M. Ballantyne, Appl. Phys. Lett. 30, 113 (1977).
[CrossRef]

IEEE J. Quantum Electron.

A. Olsson, C. L. Tang, IEEE J. Quantum Electron. QE-15, 1085 (1979).(Since publication of Refs. 3 and 4, the tuning range for the semiconductor laser has been extended to 290 Å by mechanical means, and work is in progress to demonstrate a similar electrooptic tuning range.)
[CrossRef]

Other

Ithaca Research Corp., Electro-Scan Tuner model LS-14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. M, mirror; DL, dye laser; EOT, electrooptic tuner; FA, feedback amplifier; SG, signal generator; LIA, lock-in amplifier; D, detector; A, aperture; and MI, Michelson interferometer.

Fig. 2
Fig. 2

Noise in the output intensity, due to mechanical vibrations, measured by detector voltage (a) with no feedback, (b) with feedback. Time scale, 50 msec/div; arbitrary voltage scale same as in (a) and (b).

Fig. 3
Fig. 3

Phase tracking when the aperture (small black dot) is moved across the interferometer output beam. Interferometer is locked to a bright fringe, and black dot in center of (a) is the aperture, not a dark fringe.

Fig. 4
Fig. 4

Detected output when a small rms phase disturbance ΔΓ is introduced in one interferometer arm. A: ΔΓ = 0.0; B: ΔΓ = 6.5 × 10−5; C: ΔΓ = 1.3 × 10−4; D: ΔΓ = 2.6 × 10−4; E: ΔΓ = 5.2 × 10−4 (rad). Output voltage scale for V0 is arbitrary.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 ( 1 + cos Γ ) ,
Γ = ( 2 π x ) / λ ,
I λ = I 0 2 π x λ 2 sin Γ .
( I ) / ( λ ) = 0 ,
Γ = ( 2 π x ) / λ = n π ,
Δ Γ = [ ( 2 π x ) / λ 2 ] Δ λ .
Δ λ = C Δ V ,
Δ Γ = 2 π x C λ 2 Δ V .
Δ Γ ex = [ ( 2 π x C / λ 2 ) ] Δ V .
Δ Γ max = 2 π [ ( Δ λ ) / ( δ λ ) ] .
Δ Γ min B 1 / 2 = 1 N 1 / 2 = 2.5 × 10 8 rad / Hz 1 / 2 ,

Metrics