Abstract

An earlier paper [ Applied Optics 19, 1653 ( 1980)] dealt with the ensemble averages of pulses propagating in single-mode fibers. In this paper we discuss pulse fluctuations. The light pulses are generated by modulation of the power of a continuously operating light source consisting of N discrete sinusoidal frequencies randomly phased relative to each other. The fixed amplitudes of the sinusoidal frequency components of the source are adjusted to fit into a Gaussian envelope, and the modulating pulse has a Gaussian distribution in time. This mathematical model approximates a laser light source operating in several free-running longitudinal modes. We find that the fluctuations of the modulated light pulses can die out if the pulses travel a long distance in a dispersive fiber, provided the spacings between the sinusoidal frequency components of the light source are larger than the spectral width of the modulating signal. If the source frequency components are spaced more closely than the spectral width of the modulating pulse, fluctuations persist indefinitely independent of fiber length. However, in a practical system, whose input pulse is only about half as short as the output pulse, fluctuations are practically unaffected by transmission through a fiber.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription