Abstract

The problem of edge coupling a double-heterostructure GaAlAs laser diode to a planar titanium indiffused LiNbO3 waveguide has been studied both experimentally and theoretically. Alignment sensitivities (3-dB points) have been measured and found to be ∼15 and 1 μm in the longitudinal and transverse directions, respectively. The dependence of the coupling efficiency on misalignments has been found to be in good agreement with the predictions of a simple Gaussian coupling model. In addition, a prototype coupler has been fabricated in a flip-chip configuration on a silicon substrate with ∼15% coupling efficiency into the waveguide's fundamental mode.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).
  2. D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
    [CrossRef] [PubMed]
  3. R. A. Sprague, C. L. Koliopoulis, Appl. Opt. 15, 89 (1976).
    [CrossRef] [PubMed]
  4. D. B. Anderson, IEEE Spectrum 15, 22 (Dec.1978).
  5. B. Chen, M. K. Barnoski, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 56 (1979).
  6. D. Sarid, Appl. Opt. 18, 2921 (1979).
    [CrossRef] [PubMed]
  7. Waveguides were obtained from W. S. C. Chang, Laboratory for Applied Electronic Sciences, Washington St U. Louis, Mo..
  8. R. G. Hunsperger, A. Yariv, A. Lee, Appl. Opt. 16, 1026 (1977).
    [CrossRef] [PubMed]
  9. W. K. Burns, G. B. Hocker, Appl. Opt. 16, 2048 (1977).
    [CrossRef] [PubMed]
  10. D. G. Hall, Appl. Opt. 18, 3372 (1979).
    [CrossRef] [PubMed]
  11. D. Botez, M. Ettenberg, IEEE J. Quantum Electron. QE-14, 542 (1978).
  12. W. K. Burns, Appl. Opt. 18, 2536 (1979).
    [CrossRef] [PubMed]

1979 (6)

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

B. Chen, M. K. Barnoski, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 56 (1979).

D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
[CrossRef] [PubMed]

D. Sarid, Appl. Opt. 18, 2921 (1979).
[CrossRef] [PubMed]

W. K. Burns, Appl. Opt. 18, 2536 (1979).
[CrossRef] [PubMed]

D. G. Hall, Appl. Opt. 18, 3372 (1979).
[CrossRef] [PubMed]

1978 (2)

D. Botez, M. Ettenberg, IEEE J. Quantum Electron. QE-14, 542 (1978).

D. B. Anderson, IEEE Spectrum 15, 22 (Dec.1978).

1977 (2)

1976 (1)

Anderson, D. B.

D. B. Anderson, IEEE Spectrum 15, 22 (Dec.1978).

Barnoski, M. K.

B. Chen, M. K. Barnoski, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 56 (1979).

Botez, D.

D. Botez, M. Ettenberg, IEEE J. Quantum Electron. QE-14, 542 (1978).

Burns, W. K.

Chang, W. S. C.

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

Waveguides were obtained from W. S. C. Chang, Laboratory for Applied Electronic Sciences, Washington St U. Louis, Mo..

Chen, B.

B. Chen, M. K. Barnoski, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 56 (1979).

Ettenberg, M.

D. Botez, M. Ettenberg, IEEE J. Quantum Electron. QE-14, 542 (1978).

Hall, D. G.

D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
[CrossRef] [PubMed]

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

D. G. Hall, Appl. Opt. 18, 3372 (1979).
[CrossRef] [PubMed]

Hocker, G. B.

Hunsperger, R. G.

Koliopoulis, C. L.

Lee, A.

Mueller, C.

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

Rice, R. R.

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
[CrossRef] [PubMed]

Sarid, D.

Sprague, R. A.

Yariv, A.

Zino, J. D.

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

D. G. Hall, R. R. Rice, J. D. Zino, Opt. Lett. 4, 292 (1979).
[CrossRef] [PubMed]

Appl. Opt. (6)

IEEE J. Quantum Electron. (1)

D. Botez, M. Ettenberg, IEEE J. Quantum Electron. QE-14, 542 (1978).

IEEE Spectrum (1)

D. B. Anderson, IEEE Spectrum 15, 22 (Dec.1978).

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. D. Zino, R. R. Rice, D. G. Hall, C. Mueller, W. S. C. Chang, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 148 (1979).

B. Chen, M. K. Barnoski, Proc. Soc. Photo-Opt. Instrum. Eng. 176, 56 (1979).

Other (1)

Waveguides were obtained from W. S. C. Chang, Laboratory for Applied Electronic Sciences, Washington St U. Louis, Mo..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of the coupling geometry. The laser diode's junction layer as well as the Ti:LiNbO3 waveguiding layer are parallel to the y-z plane. Perfect alignment for both the longitudinal (z) and transverse (x) directions occurs for z = 0 and Δ = 0, respectively.

Fig. 2
Fig. 2

Sample of raw data showing output prism coupled m-line intensity as a function of transverse misalignment. The interferometer output trace establishes the length scale for the displacement in the x direction.

Fig. 3
Fig. 3

Example of the fluctuations in coupled power as a function of the longitudinal separation (z) between a GaAlAs laser diode and the polished uncoated edge of a Ti:LiNbO3 waveguide.

Fig. 4
Fig. 4

Measured throughput (normalized m-line intensity) as a function of Δ for z = 7.0 μm, z = 21.7 μm, and z = 72.5 μm.

Fig. 5
Fig. 5

Comparison of measured and calculated throughput as a function of longitudinal (z) misalignment for Δ = 0. The solid lines represent fits obtained from Eq. (1) using w20 as a fitting parameter. The inset provides the coupling efficiencies for z = 0 as inferred from the fit.

Fig. 6
Fig. 6

Measured values of the full width at half-maximum (FWHM) of the transverse coupling curves (see Fig. 4) as a function of z. The solid curve is obtained from Eq. (6) using w10 = 0.4 μm and w20 = 1.4 μm.

Fig. 7
Fig. 7

Diagram showing the basic details of the prototype flip-chip coupler. The substrate is a rectangular piece of 〈100〉 silicon. (Coducting should of course read conducting.)

Fig. 8
Fig. 8

Assembled flip-chip coupler held, for convenience, on a piece of printed-circuit board by nylon screws. The length of the waveguide is ∼3.0 cm.

Fig. 9
Fig. 9

Measured far-field radiation patterns from three GaAlAs double-heterostructure laser diodes. The angle θ is measured in the plane perpendicular to the junction layer and with respect to the normal to the laser facet. The solid curves are Gaussians and show how very well such curves describe the output beam in the far-field. The table gives the full width between half-power (FWHP) points and the value of 2w10 for each laser as inferred from the Gaussian assumption [see Eq. (2)].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = η 0 ( 1 + γ ) 1 / 2 exp { [ ( w 20 / w 1 ) η 0 + 2 γ 1 + γ ] Δ 2 w 20 2 } ,
w 1 2 ( z ) = w 10 2 [ 1 + ( λ z π w 10 2 ) 2 ] ,
R 1 ( z ) = z [ 1 + ( π w 10 2 λ z ) 2 ] ,
γ = [ k 2 R 1 ( z ) ] 2 ( w 1 w 20 η 0 2 ) 2 ,
η 0 = 2 w 1 w 20 w 1 2 + w 20 2 ,
FWHM = 2 w 20 [ ln ( 2 ) ] 1 / 2 [ 1 + γ 2 γ + η 0 w 20 / w 1 ] 1 / 2 .

Metrics