Abstract

Mass spectrometry was used to study ion-induced water clusters [H+(H2O)c], where c = the cluster size, i.e., the number of monomers per cluster. It is shown that the numbers of hydrogen bonds in populations of these clusters in water vapor vary as the square of partial pressure and inversely with temperature, with functional dependencies that are almost identical to those observed for the infrared continuum absorption and for anomalous absorption in other wavelength regions. Experimental mass spectra taken at constant temperature vs partial pressure and data obtained at constant water vapor partial pressure vs temperature are presented and discussed. These results are combined with the evidence of cloud physicists including C. T. R. Wilson to show rather conclusively that naturally occurring ionic processes in water vapor generate large populations of hydrogen-bonded neutral water clusters that are responsible for the infrared continuum absorption. These processes can be enhanced by various kinds of ionizing energy, thus increasing anomalous absorption in water vapor or in moist air. If electrical properties of the atmosphere influence the infrared continuum absorption, which is an important mechanism in determining climate at the earth's surface, it will be necessary to reexamine extensively existing models of atmospheric radiative transfer.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Carlon, J. Atmos. Sci. 36, 832 (1979).
    [Crossref]
  2. H. R. Carlon, Infrared Phys. 19, 549 (1979).
    [Crossref]
  3. H. R. Carlon, Appl. Opt. 17, 3192, 3193 (1978).
    [Crossref] [PubMed]
  4. P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).
    [Crossref]
  5. H. R. Carlon, Infrared Phys. 19, 49 (1979).
    [Crossref]
  6. W. M. Elsasser, Phys. Rev. 53, 768 (1938).
    [Crossref]
  7. K. J. Bignell, Q. J. R. Meteorol. Soc. 96, 390 (1970).
    [Crossref]
  8. R. E. Roberts, J. E. A. Selby, L. M. Biberman, Appl. Opt. 15, 2085 (1976).
    [Crossref] [PubMed]
  9. R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
    [Crossref]
  10. G. G. Gimmestad, H. A. Gebbie, J. Atmos. Terr. Phys. 38, 325 (1976).
    [Crossref]
  11. H. R. Carlon, J. Appl. Phys. 51, 171 (1980).
    [Crossref]
  12. H. Israel, Atmospheric Electricity, (Israel Program for Scientific Translations, Jerusalem, 1971), Vol. 1.
  13. C. T. R. Wilson, Philos. Trans. R. Soc. London 189, 265 (1897).
    [Crossref]
  14. A. W. Castleman, I. N. Tang, J. Chem. Phys. 57, 3629 (1972);see also A. W. Castleman, P. M. Holland, R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).
    [Crossref]
  15. J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
    [Crossref]
  16. J. G. Wilson, The Principles of Cloud Chamber Technique, Cambridge Monographs on Physics (Cambridge U.P., 1951).
  17. H. R. Carlon, Appl. Opt. 4, 1089 (1965).
    [Crossref]
  18. H. R. Carlon, Appl. Opt. 5, 879 (1966).
    [Crossref] [PubMed]
  19. H. R. Carlon, Appl. Opt. 9, 2000 (1970).
    [Crossref] [PubMed]
  20. H. R. Carlon, Appl. Opt. 10, 2297 (1971).
    [Crossref] [PubMed]
  21. B. N. Hale, P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).
    [Crossref]
  22. H. R. Carlon, “Infrared Absorption by Molecular Clusters in Water Vapor,” Ph.D. Dissertation (Apr.1979).
  23. T. C. Imeson, C. S. Harden, “Chemical Ionization Ion Cluster Mass Spectrometry,” Edgewood Arsenal Technical Report EATR 4642, Aberdeen Proving Ground (May1972).
  24. L. Pauling, “The Structure of Water,” in Hydrogen Bonding, D. Hadzi, Ed. (Pergamon, New York, 1959), pp. 1–5.
  25. G. P. Montgomery, Appl. Opt. 17, 2299 (1978).
    [Crossref] [PubMed]
  26. V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).
  27. H. R. Carlon, “Final Report: Infrared Absorption by Water Clusters,” U.S. Army Armament Research and Development Command, Chemical Systems Laboratory Technical Report TR-79013, Aberdeen Proving Ground (Mar.1979) (ADA071455).
  28. D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
    [Crossref]
  29. D. C. Hogg, F. O. Guiraud, Nature London 279, 408 (1979).
    [Crossref] [PubMed]

1980 (1)

H. R. Carlon, J. Appl. Phys. 51, 171 (1980).
[Crossref]

1979 (4)

H. R. Carlon, J. Atmos. Sci. 36, 832 (1979).
[Crossref]

H. R. Carlon, Infrared Phys. 19, 549 (1979).
[Crossref]

H. R. Carlon, Infrared Phys. 19, 49 (1979).
[Crossref]

D. C. Hogg, F. O. Guiraud, Nature London 279, 408 (1979).
[Crossref] [PubMed]

1978 (3)

D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
[Crossref]

G. P. Montgomery, Appl. Opt. 17, 2299 (1978).
[Crossref] [PubMed]

H. R. Carlon, Appl. Opt. 17, 3192, 3193 (1978).
[Crossref] [PubMed]

1977 (1)

P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).
[Crossref]

1976 (2)

R. E. Roberts, J. E. A. Selby, L. M. Biberman, Appl. Opt. 15, 2085 (1976).
[Crossref] [PubMed]

G. G. Gimmestad, H. A. Gebbie, J. Atmos. Terr. Phys. 38, 325 (1976).
[Crossref]

1975 (3)

J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
[Crossref]

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

1974 (1)

B. N. Hale, P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).
[Crossref]

1972 (1)

A. W. Castleman, I. N. Tang, J. Chem. Phys. 57, 3629 (1972);see also A. W. Castleman, P. M. Holland, R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).
[Crossref]

1971 (1)

1970 (2)

H. R. Carlon, Appl. Opt. 9, 2000 (1970).
[Crossref] [PubMed]

K. J. Bignell, Q. J. R. Meteorol. Soc. 96, 390 (1970).
[Crossref]

1966 (1)

1965 (1)

1938 (1)

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[Crossref]

1897 (1)

C. T. R. Wilson, Philos. Trans. R. Soc. London 189, 265 (1897).
[Crossref]

Arefev, V. N.

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

Biberman, L. M.

Bignell, K. J.

K. J. Bignell, Q. J. R. Meteorol. Soc. 96, 390 (1970).
[Crossref]

Bohlander, R. A.

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

Carlon, H. R.

H. R. Carlon, J. Appl. Phys. 51, 171 (1980).
[Crossref]

H. R. Carlon, Infrared Phys. 19, 49 (1979).
[Crossref]

H. R. Carlon, J. Atmos. Sci. 36, 832 (1979).
[Crossref]

H. R. Carlon, Infrared Phys. 19, 549 (1979).
[Crossref]

H. R. Carlon, Appl. Opt. 17, 3192, 3193 (1978).
[Crossref] [PubMed]

H. R. Carlon, Appl. Opt. 10, 2297 (1971).
[Crossref] [PubMed]

H. R. Carlon, Appl. Opt. 9, 2000 (1970).
[Crossref] [PubMed]

H. R. Carlon, Appl. Opt. 5, 879 (1966).
[Crossref] [PubMed]

H. R. Carlon, Appl. Opt. 4, 1089 (1965).
[Crossref]

H. R. Carlon, “Infrared Absorption by Molecular Clusters in Water Vapor,” Ph.D. Dissertation (Apr.1979).

H. R. Carlon, “Final Report: Infrared Absorption by Water Clusters,” U.S. Army Armament Research and Development Command, Chemical Systems Laboratory Technical Report TR-79013, Aberdeen Proving Ground (Mar.1979) (ADA071455).

Castleman, A. W.

A. W. Castleman, I. N. Tang, J. Chem. Phys. 57, 3629 (1972);see also A. W. Castleman, P. M. Holland, R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).
[Crossref]

Dianov-Klokov, V. I.

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

Elsasser, W. M.

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[Crossref]

Emery, R. J.

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

Gebbie, H. A.

D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
[Crossref]

G. G. Gimmestad, H. A. Gebbie, J. Atmos. Terr. Phys. 38, 325 (1976).
[Crossref]

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

Gimmestad, G. G.

G. G. Gimmestad, H. A. Gebbie, J. Atmos. Terr. Phys. 38, 325 (1976).
[Crossref]

Guiraud, F. O.

D. C. Hogg, F. O. Guiraud, Nature London 279, 408 (1979).
[Crossref] [PubMed]

Hale, B. N.

B. N. Hale, P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).
[Crossref]

Harden, C. S.

T. C. Imeson, C. S. Harden, “Chemical Ionization Ion Cluster Mass Spectrometry,” Edgewood Arsenal Technical Report EATR 4642, Aberdeen Proving Ground (May1972).

Hogg, D. C.

D. C. Hogg, F. O. Guiraud, Nature London 279, 408 (1979).
[Crossref] [PubMed]

Imeson, T. C.

T. C. Imeson, C. S. Harden, “Chemical Ionization Ion Cluster Mass Spectrometry,” Edgewood Arsenal Technical Report EATR 4642, Aberdeen Proving Ground (May1972).

Israel, H.

H. Israel, Atmospheric Electricity, (Israel Program for Scientific Translations, Jerusalem, 1971), Vol. 1.

Kebarle, P.

P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).
[Crossref]

Knight, R. J.

D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
[Crossref]

Llewellyn-Jones, D. T.

D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
[Crossref]

Moffat, P.

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

Montgomery, G. P.

Owicki, J. C.

J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
[Crossref]

Pauling, L.

L. Pauling, “The Structure of Water,” in Hydrogen Bonding, D. Hadzi, Ed. (Pergamon, New York, 1959), pp. 1–5.

Plummer, P. L. M.

B. N. Hale, P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).
[Crossref]

Radinov, V. F.

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

Roberts, R. E.

Scheraga, H. A.

J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
[Crossref]

Selby, J. E. A.

Shipman, L. L.

J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
[Crossref]

Sizov, N. I.

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

Tang, I. N.

A. W. Castleman, I. N. Tang, J. Chem. Phys. 57, 3629 (1972);see also A. W. Castleman, P. M. Holland, R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).
[Crossref]

Wilson, C. T. R.

C. T. R. Wilson, Philos. Trans. R. Soc. London 189, 265 (1897).
[Crossref]

Wilson, J. G.

J. G. Wilson, The Principles of Cloud Chamber Technique, Cambridge Monographs on Physics (Cambridge U.P., 1951).

Ann. Rev. Phys. Chem. (1)

P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).
[Crossref]

Appl. Opt. (7)

Infrared Phys. (2)

H. R. Carlon, Infrared Phys. 19, 549 (1979).
[Crossref]

H. R. Carlon, Infrared Phys. 19, 49 (1979).
[Crossref]

J. Appl. Phys. (1)

H. R. Carlon, J. Appl. Phys. 51, 171 (1980).
[Crossref]

J. Atmos. Sci. (2)

H. R. Carlon, J. Atmos. Sci. 36, 832 (1979).
[Crossref]

B. N. Hale, P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).
[Crossref]

J. Atmos. Terr. Phys. (2)

R. J. Emery, P. Moffat, R. A. Bohlander, H. A. Gebbie, J. Atmos. Terr. Phys. 37, 587 (1975).
[Crossref]

G. G. Gimmestad, H. A. Gebbie, J. Atmos. Terr. Phys. 38, 325 (1976).
[Crossref]

J. Chem. Phys. (1)

A. W. Castleman, I. N. Tang, J. Chem. Phys. 57, 3629 (1972);see also A. W. Castleman, P. M. Holland, R. G. Keesee, J. Chem. Phys. 68, 1760 (1978).
[Crossref]

J. Phys. Chem. (1)

J. C. Owicki, L. L. Shipman, H. A. Scheraga, J. Phys. Chem. 79, 1794 (1975).
[Crossref]

Nature London (2)

D. T. Llewellyn-Jones, R. J. Knight, H. A. Gebbie, Nature London 274, 876 (1978).
[Crossref]

D. C. Hogg, F. O. Guiraud, Nature London 279, 408 (1979).
[Crossref] [PubMed]

Opt. Spectrosc. USSR (1)

V. N. Arefev, V. I. Dianov-Klokov, V. F. Radinov, N. I. Sizov, Opt. Spectrosc. USSR 39, 560 (1975).

Philos. Trans. R. Soc. London (1)

C. T. R. Wilson, Philos. Trans. R. Soc. London 189, 265 (1897).
[Crossref]

Phys. Rev. (1)

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[Crossref]

Q. J. R. Meteorol. Soc. (1)

K. J. Bignell, Q. J. R. Meteorol. Soc. 96, 390 (1970).
[Crossref]

Other (6)

H. R. Carlon, “Infrared Absorption by Molecular Clusters in Water Vapor,” Ph.D. Dissertation (Apr.1979).

T. C. Imeson, C. S. Harden, “Chemical Ionization Ion Cluster Mass Spectrometry,” Edgewood Arsenal Technical Report EATR 4642, Aberdeen Proving Ground (May1972).

L. Pauling, “The Structure of Water,” in Hydrogen Bonding, D. Hadzi, Ed. (Pergamon, New York, 1959), pp. 1–5.

H. Israel, Atmospheric Electricity, (Israel Program for Scientific Translations, Jerusalem, 1971), Vol. 1.

H. R. Carlon, “Final Report: Infrared Absorption by Water Clusters,” U.S. Army Armament Research and Development Command, Chemical Systems Laboratory Technical Report TR-79013, Aberdeen Proving Ground (Mar.1979) (ADA071455).

J. G. Wilson, The Principles of Cloud Chamber Technique, Cambridge Monographs on Physics (Cambridge U.P., 1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Equilibrium curves for atmospheric clusters and aerosols of many types (after Wilson16): temperature 0°C. The solid curve represents ions and hydrated ions as discussed in this paper. As discussed in the text, the solid curve probably should instead be represented by two curves, as shown in Fig. 2.

Fig. 2
Fig. 2

Representation of the probable equilibria associated with the solid curve labeled ion in Fig. 1. Two peaked curves actually are present rather than one, but they are closely spaced to each other. As discussed in the text in connection with Wilson's experiments,13 the curve peaking at radius a1 represents ion hydrates [Eq. (1a)], of which there are 100 / c m 3 at 0°C and which can be measured by electrical conductivity,1,11 and the curve peaking at radius a2 represents ion-induced neutral clusters responsible for Wilson's cloudlike condensation and that he estimated to have populations >108/cm3 at 0°C. All evidence suggests that hydrogen bonds in the latter ion-induced neutral water clusters are responsible for the infrared continuum absorption.

Fig. 3
Fig. 3

Schematic diagram of ion cluster mass spectrometry (ICMS) apparatus.

Fig. 4
Fig. 4

Schematic of ICMS vacuum system.

Fig. 5
Fig. 5

Mass spectra for constant temperature and varying water vapor partial pressure: (a) spectra at 100°C for pressures from 42 to 234 mm Hg; (b) spectra at 99°C for pressures from 289 to 417 mm Hg.

Fig. 6
Fig. 6

Variation in mean cluster size cμ with partial pressure or saturation ratio at constant temperature = 99–100° C (measured with mass spectrometer). A linear regression line is shown for purposes of discussion in the text. Actually, the curve fitting the points has the form cμ = k ln(s) + K (see text), but absorption measurements in the infrared are very difficult to make as the vapor pressure approaches zero (see Ref. 7).

Fig. 7
Fig. 7

Variation in mean cluster size cμ with partial pressure or saturation ratio at constant temperature = 20° C (deduced from the infrared absorption measurements of Arefev et al.26).

Fig. 8
Fig. 8

Estimated number of clusters per cm3 (Ncc) vs cluster size for constant-temperature mass spectrometric data (top curves, Fig. 6) and for estimates based on infrared measurements of anomalous absorption by Arefev et al.26 (bottom curves, Fig. 7). Lines of equal saturation ratio are shown dashed, and saturation ratios (s) are noted on the curves.

Fig. 9
Fig. 9

Results of mass spectrometer measurements at constant water vapor content vs saturation ratio that resulted by heating the vapor to the temperatures shown on the points.

Fig. 10
Fig. 10

Results of mass spectrometer measurements at constant water vapor content vs temperature (see also Fig. 9); the dashed line shows the slope of the negative temperature dependency for the infrared continuum absorption, as reported by Bignell7 for the temperature range 21–45°C.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H + ( H 2 O ) c 1 + H 2 O body third H + ( H 2 O ) c
H + ( H 2 O ) c + X H X ( H 2 O ) c ,
N 2 + + H 2 O N 2 + H 2 O + ,
H 2 O + + H 2 O H 3 O + + OH ,
H 2 O ( * ) H + + OH ,
H + + H 2 O H 3 O + ,
R θ σ M ln ( p / p 0 ) = 2 T r + d T d r ( 1 e 1 1 e 2 ) q 2 8 π r 4 ,
A = K θ ( p ) 2 = K θ ( s ) 2 ,
A = K θ ( p ) f ( p ) ,
A = K θ ( p ) ( c ) μ .
c μ = f ( p ) = a + b ( p ) , ( p 0 ) ,
A = K θ ( p ) ( a + b p ) ( p 0 ) .
N c c = 9.6 × 10 18 ( s ) ( p 0 ) ( n c ) υ c μ θ k ,

Metrics