Abstract

New Rayleigh-scattering optical thickness values for the terrestrial atmosphere in the 260 < λ < 1500-nm wavelength range have been calculated using updated data on atmospheric optical parameters. The calculations include molecular scattering from water vapor and take into account varying atmospheric composition with altitude. The new Rayleigh-scattering coefficients average 4.5% lower than those listed by Penndorf in 1955.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Hoyt, J. Appl. Meteorol. 16, 432 (1977).
    [CrossRef]
  2. L. Elterman, “UV, Visible and IR Attenuation for Altitudes to 50 km, 1968,” AFCRL-68-0153, Environmental Research Paper 285 (Apr.1968).
  3. R. Penndorf, “Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficients for the Spectral Region between 0.2 and 20 and Their Application to Atmospheric Optics,” AFCRC-TN-206, AFCRL Report (1955).
  4. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp.31, 583.
  5. R. Edlén, Metrologia 2, 71 (1966).
    [CrossRef]
  6. E. D. Peck, K. Reeder, J. Opt. Soc. Am. 62, 958 (1972).
    [CrossRef]
  7. F. Kasten, Optik 27, 155 (1968).
  8. A. Weber, P. S. Porto, L. E. Cheesman, J. J. Barrett, J. Opt. Soc. Am. 57, 19 (1967).
    [CrossRef]
  9. R. R. Rudder, D. R. Bach, J. Opt. Soc. Am. 58, 1260 (1968).
    [CrossRef]
  10. G. E. Shaw, “Multi-Wavelength Turbidity at the Mauna Loa Observatory,” U. Alaska, Geophysical Institute, UAG R-251 (1978).
  11. U.S. Standard Atmosphere Supplements, prepared under sponsorship of ESSA and NASA, U.S. Air Force (1966).
  12. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

1977

D. V. Hoyt, J. Appl. Meteorol. 16, 432 (1977).
[CrossRef]

1972

1968

1967

1966

R. Edlén, Metrologia 2, 71 (1966).
[CrossRef]

Bach, D. R.

Barrett, J. J.

Cheesman, L. E.

Edlén, R.

R. Edlén, Metrologia 2, 71 (1966).
[CrossRef]

Elterman, L.

L. Elterman, “UV, Visible and IR Attenuation for Altitudes to 50 km, 1968,” AFCRL-68-0153, Environmental Research Paper 285 (Apr.1968).

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

Hoyt, D. V.

D. V. Hoyt, J. Appl. Meteorol. 16, 432 (1977).
[CrossRef]

Kasten, F.

F. Kasten, Optik 27, 155 (1968).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp.31, 583.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

Peck, E. D.

Penndorf, R.

R. Penndorf, “Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficients for the Spectral Region between 0.2 and 20 and Their Application to Atmospheric Optics,” AFCRC-TN-206, AFCRL Report (1955).

Porto, P. S.

Reeder, K.

Rudder, R. R.

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

Shaw, G. E.

G. E. Shaw, “Multi-Wavelength Turbidity at the Mauna Loa Observatory,” U. Alaska, Geophysical Institute, UAG R-251 (1978).

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

Weber, A.

J. Appl. Meteorol.

D. V. Hoyt, J. Appl. Meteorol. 16, 432 (1977).
[CrossRef]

J. Opt. Soc. Am.

Metrologia

R. Edlén, Metrologia 2, 71 (1966).
[CrossRef]

Optik

F. Kasten, Optik 27, 155 (1968).

Other

G. E. Shaw, “Multi-Wavelength Turbidity at the Mauna Loa Observatory,” U. Alaska, Geophysical Institute, UAG R-251 (1978).

U.S. Standard Atmosphere Supplements, prepared under sponsorship of ESSA and NASA, U.S. Air Force (1966).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331, Hanscom Field, Bedford, Mass. (1975).

L. Elterman, “UV, Visible and IR Attenuation for Altitudes to 50 km, 1968,” AFCRL-68-0153, Environmental Research Paper 285 (Apr.1968).

R. Penndorf, “Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficients for the Spectral Region between 0.2 and 20 and Their Application to Atmospheric Optics,” AFCRC-TN-206, AFCRL Report (1955).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp.31, 583.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (4)

Tables Icon

Table I Optical Parameters and Relative Concentrations of Atmospheric Gases

Tables Icon

Table II Rayleigh Optical Depth for Airmass 1, Reduced to 1013 mb a

Tables Icon

Table III Constants α and β for Model Atmospheres a

Tables Icon

Table IV Maximum Error in Computation Using Eq. (7)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k R = 24 π 3 λ 4 · 1 N ( n 2 1 n 2 + 1 ) 2 6 + 3 δ 6 7 δ ,
( n 2 1 ) 2 N = ( n s 2 1 ) 2 N s · N N s ,
n tpf = 1 + ( n s 1 ) 0.00138823 · p 1 + 0.003671 · t f · ( 5.722 0.0457 σ 2 ) 10 8 ,
( n s 1 ) · 10 8 = 5791817 238.0185 σ 2 + 167909 57.362 σ 2 .
( n air 2 1 ) 2 · D air = i ( n i 2 1 ) 2 · D i · C i ,
D air = 1.0160 ± 0.0068 , δ air = 0.0095 ± 0.0040 .
τ R ( λ ) = A · λ ( B + C · λ + D / λ )
B = 3.916 , C = 0.074 , D = 0.050 .
A = ( p / p 0 ) ( α + β · H ) ,
τ R ( λ ) = A · λ B ,
τ R ( λ ) = 0.00838 · λ ( 3.916 + 0.074 · λ + 0.050 / λ ) .

Metrics