Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Richardson, Proc. Soc. for Inf. Disp.132 (1972).
  2. F. A. Ebeling, Proc. Soc. for Inf. Disp.134 (1972).
  3. S. W. Golomb, Ed., Digital Communications with Space Applications (Prentice-Hall, Englewood Cliffs, N.J., 1964).

1972 (2)

B. L. Richardson, Proc. Soc. for Inf. Disp.132 (1972).

F. A. Ebeling, Proc. Soc. for Inf. Disp.134 (1972).

Ebeling, F. A.

F. A. Ebeling, Proc. Soc. for Inf. Disp.134 (1972).

Richardson, B. L.

B. L. Richardson, Proc. Soc. for Inf. Disp.132 (1972).

Proc. Soc. for Inf. Disp. (2)

B. L. Richardson, Proc. Soc. for Inf. Disp.132 (1972).

F. A. Ebeling, Proc. Soc. for Inf. Disp.134 (1972).

Other (1)

S. W. Golomb, Ed., Digital Communications with Space Applications (Prentice-Hall, Englewood Cliffs, N.J., 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram.

Fig. 2
Fig. 2

LED tablet plane.

Fig. 3
Fig. 3

Coherent detector by differential integrator.

Fig. 4
Fig. 4

Outputs of the coherent detector: (a) light beam is not broken; (b) light beam is broken.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

0 n T m ( t ) m ( t k T ) d t = { n T k = 0 , ± n + 2 n , . . . , T otherwise for k = integer
M ( t ) = 1 2 [ 1 + m ( t ) ] t ( 0 , n T ) , = 0 t ( n T , n T ) , M ( t ) = M ( t k n T ) otherwise for integer k ,
y i = ( k n + i ) T ( k n + n + i ) T r ( t ) m ( t i T ) d t ,
M ( t ) = 1 2 [ 1 + m ( t ) ] for all t .
θ i = { 1 no stylus at the i th position , 0 the stylus is at i th position .
y i = θ i i T ( n + i ) T M ( t i T ) m ( t i T ) d t , = θ i 1 2 n T ,

Metrics