Abstract

When molecules which give rise to Raman and fluorescent light scattering are distributed within a small dielectric particle, the signal is affected by the morphology and optical properties of the particle and by the distribution of active molecules within it. This effect is considered to arise from the influence of the particle boundary both upon the internal field at the incident frequency and upon the emissions at the shifted frequency rather than from any alteration of the molecular transitions. This study presents numerical results over a broad range of refractive indexes and for larger size parameters than heretofore. It includes explicit consideration of components polarized in the same plane as the incident field, Hh and Vv, as well as the depolarized components Vh and Hv. Quantitative estimates of the concentration of active species may be in error if these effects are not considered.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Rosasco, E. S. Etz, W. A. Cassatt, Appl. Spectrosc. 29, 396 (1975); G. J. Rosasco, E. J. Etz, Res. Dev. 24, 20 (June1977); E. S. Etz, G. J. Rosasco, W. C. Cunningham, in Environmental Analysis, G. W. Ewing, Ed. (Academic, New York, in press).
    [CrossRef]
  2. M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975); M. Bridoux, M. Delhaye, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Heyden and Son, London, 1976) Chap. 4; M. Delhaye, E. DaSilva, G. S. Hayat, Am. Lab. 83 (April1977).
    [CrossRef]
  3. E. S. Etz, G. J. Rosasco, in Environmental Pollutants, T. Y. Toribara, J. R. Coleman, B. E. Dahneke, I. Feldman, Eds. (Plenum, New York, 1978), pp. 413–456.
    [CrossRef]
  4. For example, see J. Histochem. Cytochem. 24, 1 (1976); J. Histochem. Cytochem. 25, 479 (1977).
  5. P. Dusel, M. Kerker, D. D. Cooke, J. Opt. Soc. Am. 69, 55 (1979).
    [CrossRef]
  6. This is comparable to the effect for dipoles close to a plane interface as studied by W. Lukosz, R. E. Runz, J. Opt. Soc. Am. 67, 1607, 1615 (1977).
    [CrossRef]
  7. H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A 13, 396 (1976).
    [CrossRef]
  8. H. Chew, M. Kerker, P. J. McNulty, J. Opt. Soc. Am. 66, 440 (1976).
    [CrossRef]
  9. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, J. Opt. Soc. Am. 68, 1676 (1978).
    [CrossRef]
  10. H. Chew, M. Sculley, M. Kerker, P. J. McNulty, D. D. Cooke, J. Opt. Soc. Am. 68, 1686 (1978).
    [CrossRef]
  11. M. Kerker, Appl. Opt. 12, 2787 (1973).
    [CrossRef] [PubMed]
  12. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  13. J. P. Kratohvil, M.-P. Lee, M. Kerker, Appl. Opt. 17, (1978).
    [CrossRef] [PubMed]
  14. H. S. Bennett, G. J. Rosasco, Appl. Opt. 17, 491 (1978).
    [CrossRef] [PubMed]

1979 (1)

1978 (4)

1977 (1)

This is comparable to the effect for dipoles close to a plane interface as studied by W. Lukosz, R. E. Runz, J. Opt. Soc. Am. 67, 1607, 1615 (1977).
[CrossRef]

1976 (3)

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A 13, 396 (1976).
[CrossRef]

H. Chew, M. Kerker, P. J. McNulty, J. Opt. Soc. Am. 66, 440 (1976).
[CrossRef]

For example, see J. Histochem. Cytochem. 24, 1 (1976); J. Histochem. Cytochem. 25, 479 (1977).

1975 (2)

G. J. Rosasco, E. S. Etz, W. A. Cassatt, Appl. Spectrosc. 29, 396 (1975); G. J. Rosasco, E. J. Etz, Res. Dev. 24, 20 (June1977); E. S. Etz, G. J. Rosasco, W. C. Cunningham, in Environmental Analysis, G. W. Ewing, Ed. (Academic, New York, in press).
[CrossRef]

M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975); M. Bridoux, M. Delhaye, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Heyden and Son, London, 1976) Chap. 4; M. Delhaye, E. DaSilva, G. S. Hayat, Am. Lab. 83 (April1977).
[CrossRef]

1973 (1)

Bennett, H. S.

Cassatt, W. A.

Chew, H.

Cooke, D. D.

Delhaye, M.

M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975); M. Bridoux, M. Delhaye, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Heyden and Son, London, 1976) Chap. 4; M. Delhaye, E. DaSilva, G. S. Hayat, Am. Lab. 83 (April1977).
[CrossRef]

Dhamelincourt, P.

M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975); M. Bridoux, M. Delhaye, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Heyden and Son, London, 1976) Chap. 4; M. Delhaye, E. DaSilva, G. S. Hayat, Am. Lab. 83 (April1977).
[CrossRef]

Dusel, P.

Etz, E. S.

Kerker, M.

Kratohvil, J. P.

J. P. Kratohvil, M.-P. Lee, M. Kerker, Appl. Opt. 17, (1978).
[CrossRef] [PubMed]

Lee, M.-P.

J. P. Kratohvil, M.-P. Lee, M. Kerker, Appl. Opt. 17, (1978).
[CrossRef] [PubMed]

Lukosz, W.

This is comparable to the effect for dipoles close to a plane interface as studied by W. Lukosz, R. E. Runz, J. Opt. Soc. Am. 67, 1607, 1615 (1977).
[CrossRef]

McNulty, P. J.

Rosasco, G. J.

Runz, R. E.

This is comparable to the effect for dipoles close to a plane interface as studied by W. Lukosz, R. E. Runz, J. Opt. Soc. Am. 67, 1607, 1615 (1977).
[CrossRef]

Sculley, M.

Appl. Opt. (3)

Appl. Spectrosc. (1)

J. Histochem. Cytochem. (1)

For example, see J. Histochem. Cytochem. 24, 1 (1976); J. Histochem. Cytochem. 25, 479 (1977).

J. Opt. Soc. Am. (5)

J. Raman Spectrosc. (1)

M. Delhaye, P. Dhamelincourt, J. Raman Spectrosc. 3, 33 (1975); M. Bridoux, M. Delhaye, in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, Eds. (Heyden and Son, London, 1976) Chap. 4; M. Delhaye, E. DaSilva, G. S. Hayat, Am. Lab. 83 (April1977).
[CrossRef]

Phys. Rev. A (1)

H. Chew, P. J. McNulty, M. Kerker, Phys. Rev. A 13, 396 (1976).
[CrossRef]

Other (2)

E. S. Etz, G. J. Rosasco, in Environmental Pollutants, T. Y. Toribara, J. R. Coleman, B. E. Dahneke, I. Feldman, Eds. (Plenum, New York, 1978), pp. 413–456.
[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Parallel component of scattered radiance Hh vs scattering angle θ for m = 1.10 and α = 0.1, 0.5, 2, 20.

Fig. 2
Fig. 2

Parallel component of scattered radiance Hh vs size parameter α for m = 1.10 at θ = 0–180° in 30° intervals.

Fig. 3
Fig. 3

Depolarized component of scattered radiance Vh vs size parameter α for m = 1.10 at 90° and the corresponding polarization ratio, ρh = Vh/Hh.

Fig. 4
Fig. 4

Depolarized component of scattered radiance Vh vs scattering angle θ for m = 1.10 and α = 2.5, 4, 10, 20.

Fig. 5
Fig. 5

Parallel component of scattered radiance Hh vs scattering angle θ for m = 1.50 and α = 0.2, 1, 2, 15, 20.

Fig. 6
Fig. 6

Parallel component of scattered radiance Hh vs size parameter α for m = 1.50 at θ = 0°, 60°, 90°.

Fig. 7
Fig. 7

Depolarized component of scattered radiance Vh vs size parameter α for m = 1.50 at 30° (dash–dot) and 90° (full) and the corresponding polarization ratios ρh = Vh/Hh. The region of larger size parameters (α > 8) is drawn dotted and dashed in order to indicate that insufficient points were calculated to permit determination of the fine structure of the curves.

Fig. 8
Fig. 8

Depolarized component of scattered radiance Vh vs scattering angle θ for m = 1.50 and α = 2.25, 5, 10, 20.

Fig. 9
Fig. 9

Perpendicular component of scattered radiance Vv × 10−35 vs scattering angle θ for m = 1.50 and α = 2.25, 5, 6, 8.

Fig. 10
Fig. 10

Parallel component of scattered radiance Hh vs scattering angle θ for α = 4 and m = 1.10, 1.20, 1.33, 1.50.

Fig. 11
Fig. 11

Parallel component of scattered radiance Hh vs α for θ = 30° and m = 1.10, 1.20, 1.33, 1.50.

Fig. 12
Fig. 12

Depolarized component of scattered radiance Vh vs α for θ = 60 and m = 1.10, 1.20, 1.33, 1.50.

Fig. 13
Fig. 13

Particle absorption factor vs size parameter α for m = 1.10–1 × 10−7i. Inset shows resonance near α = 200.8278 for m = 1.107–1 × 10−7i.

Fig. 14
Fig. 14

Particle absorption factor vs size parameter α for m = 1.20–1 × 10−7i. Inset shows resonance near α = 86.0020.

Fig. 15
Fig. 15

Particle absorption factor vs size parameter α for m = 1.33–1 × 10−7i. Inset shows resonance near α = 94.7984.

Fig. 16
Fig. 16

Particle absorption factor vs size parameter α for m = 1.50–1 × 10−7i. Inset shows resonance near α = 18.4020.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = ( 3 Q abs ) / ( 8 f n κ α ) ,
m = n ( 1 - κ i ) ,
f = 1 - | m - 1 m + 1 | 2 .
η = ( - 1.5 f n κ ) Im ( m 2 - 1 m 2 + 2 ) .

Metrics