Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakai, T. Kimura, Appl. Opt. 17, 1499 (1978).
    [CrossRef] [PubMed]
  2. D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
    [CrossRef]
  3. H. D. Rudolph, E. G. Neumann, Nachrichtentech. Z. 29, 328 (1976).
  4. J. Sakai, T. Kimura, Appl. Opt. 17, 3653 (1978).
    [CrossRef] [PubMed]
  5. L. Lewin, IEEE Trans. Microwave Theory Tech. MTT-22, 718 (1974).
    [CrossRef]
  6. E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
    [CrossRef]
  7. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]

1978 (3)

1976 (2)

H. D. Rudolph, E. G. Neumann, Nachrichtentech. Z. 29, 328 (1976).

D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
[CrossRef]

1975 (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

1974 (1)

L. Lewin, IEEE Trans. Microwave Theory Tech. MTT-22, 718 (1974).
[CrossRef]

Chang, D. C.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Kimura, T.

Kuester, E. F.

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

Lewin, L.

L. Lewin, IEEE Trans. Microwave Theory Tech. MTT-22, 718 (1974).
[CrossRef]

Marcuse, D.

Neumann, E. G.

H. D. Rudolph, E. G. Neumann, Nachrichtentech. Z. 29, 328 (1976).

Rudolph, H. D.

H. D. Rudolph, E. G. Neumann, Nachrichtentech. Z. 29, 328 (1976).

Sakai, J.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

E. F. Kuester, D. C. Chang, IEEE J. Quantum Electron. QE-11, 903 (1975).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. Lewin, IEEE Trans. Microwave Theory Tech. MTT-22, 718 (1974).
[CrossRef]

J. Opt. Soc. Am. (2)

Nachrichtentech. Z. (1)

H. D. Rudolph, E. G. Neumann, Nachrichtentech. Z. 29, 328 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Bending loss parameter B = Δ3/2R*/λ as a function of normalized frequency v. Solid line curves are derived from Eq. (5). αB = 0.1 dB/km. Broken line curves are exact values obtained from Ref. 4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α B = π 4 A e 2 P a exp ( - 4 Δ w 3 3 a v 2 R ) w ( w R a + v 2 2 Δ w ) 1 / 2 .
A e 2 / P = 1 ( π a 2 Ω 0 2 ) .
G = - 3 v 2 4 w 3 ln [ 4 π ( G + v 2 / 2 w 2 ) 1 / 2 Ω 0 2 w 3 / 2 a α B / Δ ] .
G = - 3 v 2 4 w 3 ln ( 5.962 × 10 - 7 α B ) .             ( α B in dB / km ) .
B ( v ; α B ) = Δ 3 / 2 R * / λ = ( v / w ) 3 [ - 5.82 × 10 - 2 ln [ 5.962 × 10 - 7 α B ) ] .
w = 1.1428 v - 0.9960 ;             1.5 v 2.5
w = ( v 2 - u 2 ) 1 / 2 , u = exp { [ q 1 + ( 1 - q 1 ) exp ( 1 - q 2 v q 3 ) ] ln ( v ) } , q 1 = 0.1771 + 0.266 / α + 0.3834 exp ( - 0.3 α ) , q 2 = 0.304 arctan [ 1.4 ln ( 1 + 0.3675 α 1.347 ) ] , q 3 = 0.5425 + 0.6417 / α 0.6214 1.5 < v < ,             1 < α < 150 ,

Metrics