Abstract

A new technique has been proposed for direct measurement of the cut-off wavelength, at which the first higher-order mode disappears. It uses a change of a near-field pattern of a fiber, which is excited by a variable wavelength source. The cut-off wavelength can be measured with ±5-nm accuracy. The most suitable fiber length for precise measurement is 10–20 mm. It is found, furthermore, that the first higher-order mode under the condition near cut-off rapidly attenuates because of waveguide imperfections, in which the loss due to core-cladding boundary distortions is the most dominant.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
    [CrossRef]
  2. H. Tsuchiya, I. Hatakeyama, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), postdeadline paper.
  3. Y. Murakami, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 495 (1978).
    [CrossRef]
  4. Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
    [CrossRef]
  5. Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
    [CrossRef]
  6. W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
    [CrossRef]
  7. I. Hatakeyama, H. Tsuchiya, Appl. Opt. 17, 1959 (1978).
    [CrossRef] [PubMed]
  8. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  9. T. Okoshi, K. Okamoto, IEEE Trans. Microwave Theory Tech. MTT-22, 938 (1974).
    [CrossRef]
  10. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  11. D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).
  12. R. Olshansky, in Digest of Second European Conference on Optical Fiber Communication, Paris (September, 1976), p. 101.
  13. A. Snyder, D. J. Mitchell, Opto-Electronics 6, 287 (1974).
    [CrossRef]

1978 (3)

Y. Murakami, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 495 (1978).
[CrossRef]

Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
[CrossRef]

I. Hatakeyama, H. Tsuchiya, Appl. Opt. 17, 1959 (1978).
[CrossRef] [PubMed]

1977 (2)

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

1976 (2)

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
[CrossRef]

1974 (2)

A. Snyder, D. J. Mitchell, Opto-Electronics 6, 287 (1974).
[CrossRef]

T. Okoshi, K. Okamoto, IEEE Trans. Microwave Theory Tech. MTT-22, 938 (1974).
[CrossRef]

1971 (1)

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Gloge, D.

Hatakeyama, I.

I. Hatakeyama, H. Tsuchiya, Appl. Opt. 17, 1959 (1978).
[CrossRef] [PubMed]

Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
[CrossRef]

H. Tsuchiya, I. Hatakeyama, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), postdeadline paper.

Hosaka, T.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Kawachi, M.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Kawana, A.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Marcuse, D.

D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
[CrossRef]

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Mitchell, D. J.

A. Snyder, D. J. Mitchell, Opto-Electronics 6, 287 (1974).
[CrossRef]

Miyashita, T.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Murakami, Y.

Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
[CrossRef]

Y. Murakami, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 495 (1978).
[CrossRef]

Nakahara, M.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Norman, S. R.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Okamoto, K.

T. Okoshi, K. Okamoto, IEEE Trans. Microwave Theory Tech. MTT-22, 938 (1974).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Okamoto, IEEE Trans. Microwave Theory Tech. MTT-22, 938 (1974).
[CrossRef]

Olshansky, R.

R. Olshansky, in Digest of Second European Conference on Optical Fiber Communication, Paris (September, 1976), p. 101.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Snyder, A.

A. Snyder, D. J. Mitchell, Opto-Electronics 6, 287 (1974).
[CrossRef]

Tokuda, M.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Tsuchiya, H.

Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
[CrossRef]

Y. Murakami, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 495 (1978).
[CrossRef]

I. Hatakeyama, H. Tsuchiya, Appl. Opt. 17, 1959 (1978).
[CrossRef] [PubMed]

H. Tsuchiya, I. Hatakeyama, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), postdeadline paper.

Uchida, N.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (4)

A. Kawana, T. Miyashita, M. Nakahara, M. Kawachi, T. Hosaka, Electron. Lett. 13, 188 (1977).
[CrossRef]

Y. Murakami, I. Hatakeyama, H. Tsuchiya, Electron. Lett. 14, 277 (1978).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Murakami, H. Tsuchiya, IEEE J. Quantum Electron. QE-14, 495 (1978).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

T. Okoshi, K. Okamoto, IEEE Trans. Microwave Theory Tech. MTT-22, 938 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

Opto-Electronics (1)

A. Snyder, D. J. Mitchell, Opto-Electronics 6, 287 (1974).
[CrossRef]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic, New York, 1974).

R. Olshansky, in Digest of Second European Conference on Optical Fiber Communication, Paris (September, 1976), p. 101.

H. Tsuchiya, I. Hatakeyama, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), postdeadline paper.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental near-field pattern technique setup.

Fig. 2
Fig. 2

Near-field patterns, observed at end face of 70-m long fiber, whose refractive-index profile is shown in Fig. 4.

Fig. 3
Fig. 3

LP11 mode to LP01 mode power ratio, measured in the output power of the 70-m long fiber.

Fig. 4
Fig. 4

Fiber refractive-index profile. Solid line curve shows measured profile, and broken line curve shows a step-index profile with the same cut-off wavelength.

Fig. 5
Fig. 5

Fiber-length dependence of effective cut-off wavelength in the fiber with a 4.30-μm core diam. Point λe shows cut-off wavelength, calculated from measured refractive-index profile of Fig. 4.

Fig. 6
Fig. 6

Cut-off wavelengths of fibers whose core diameters are changed from 3.1 μm and 4.9 μm. White marks and black marks show measured effective cut-off wavelengths when fiber lengths are 10 mm and 1000 mm, respectively. Solid line curve shows theoretical value calculated from index profile shown in Fig. 4.

Fig. 7
Fig. 7

LP11 mode losses. Fiber parameters are 2a = 4.3 μm, b/a = 5, n2 = 1.46, and Δ = 0.374%. Solid line curve shows loss due to core-cladding boundary distortions, given by Eq. (3), with c1 = 4.5 × 102 (1/m3) and p = 1. Broken line curve shows absorption loss, given by Eq. (1), with αq = 1 dB/m. Dot–dash line curve shows bending loss, given by Eq. (2), with R = 200 mm. White and black marks show measured losses obtained from Figs. 5 and 3, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α a = α q b 2 a 2 · U 2 V 2 [ K 0 ( W b / a ) K 2 ( W b / a ) K 0 ( W ) K 2 ( W ) - K 1 2 ( W b / a ) K 0 ( W ) K 2 ( W ) ] ,
α b = ( π R a ) 1 / 2 U 2 exp [ - 2 3 · W 3 ( β 1 a ) 2 · R a ] W 3 / 2 V 2 K 0 ( W ) K 2 ( W ) ,
α c = ν - n 2 k n 2 k K 1 ν 2 c 1 β d β ( β 1 - β ) 4 + 2 p ,

Metrics