Abstract

Experimental data on the angular distribution of fluorescence from thick liquid dye layers excited by evanescent waves are found to agree well with Fresnel theory and with an effective thickness formulation. Qualitative agreement of theory with fluorescence data obtained from monodispersed spherical particles having diameters comparable to the wavelength of the incident evanescent radiation and impregnated with dye moleculesis also attained. From our results, the optimum incident and observation angles and polarizations to enhance the contrast and SNR for inelastic ATR reemission spectroscopy applied to studying micron or submicron layers of particulates can be predicted.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Rosasco, E. S. Etz, W. A. Cassatt, Appl. Spectrosc. 29, 396 (1975).
    [CrossRef]
  2. N. J. Harrick, Internal Reflection Spectroscopy (Interscience-Wiley, New York, 1967).
  3. T. Hirschfeld, Can. Spectrosc. 10, 128 (1965).
  4. N. J. Harrick, J. Opt. Soc. Am. 55, 851 (1965).
    [CrossRef]
  5. P. Grivet, in Proceedings of the Symposium on Modern Optics, Jerome. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), p. 467.
  6. C. K. Carniglia, L. Mandel, K. H. Drexhage, J. Opt. Soc. Am. 62, 479 (1972).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 39–50.
  8. R. T. Holm, E. D. Palik, Appl. Opt. 17, 394 (1978).
    [CrossRef] [PubMed]
  9. N. J. Harrick, F. K. du Pré, Appl. Opt. 5, 1739 (1966).
    [CrossRef] [PubMed]
  10. T. Hirschfeld, Appl. Spectrosc. 31, 243 (1977).
    [CrossRef]
  11. N. J. Harrick, A. I. Carlson, Appl. Opt. 10, 19 (1971).
    [CrossRef] [PubMed]
  12. V. M. Zolotarev, Opt. Spectrosc. 37, 295 (1974).
  13. R. E. Bruce, J. B. Gillespie, O. G. Perez, Appl. Opt. 16, 1783 (1977).
    [CrossRef] [PubMed]
  14. T. Hirschfeld, M. J. Block, W. Mueller, J. Histochem. Cytochem. 25, 719 (1977).
    [CrossRef] [PubMed]
  15. El-Hang Lee, R. E. Benner, J. B. Fenn, R. K. Chang, Appl. Opt. 17, 1980 (1978).
    [CrossRef]

1978 (2)

1977 (3)

1975 (1)

1974 (1)

V. M. Zolotarev, Opt. Spectrosc. 37, 295 (1974).

1972 (1)

1971 (1)

1966 (1)

1965 (2)

T. Hirschfeld, Can. Spectrosc. 10, 128 (1965).

N. J. Harrick, J. Opt. Soc. Am. 55, 851 (1965).
[CrossRef]

Benner, R. E.

Block, M. J.

T. Hirschfeld, M. J. Block, W. Mueller, J. Histochem. Cytochem. 25, 719 (1977).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 39–50.

Bruce, R. E.

Carlson, A. I.

Carniglia, C. K.

Cassatt, W. A.

Chang, R. K.

Drexhage, K. H.

du Pré, F. K.

Etz, E. S.

Fenn, J. B.

Gillespie, J. B.

Grivet, P.

P. Grivet, in Proceedings of the Symposium on Modern Optics, Jerome. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), p. 467.

Harrick, N. J.

Hirschfeld, T.

T. Hirschfeld, M. J. Block, W. Mueller, J. Histochem. Cytochem. 25, 719 (1977).
[CrossRef] [PubMed]

T. Hirschfeld, Appl. Spectrosc. 31, 243 (1977).
[CrossRef]

T. Hirschfeld, Can. Spectrosc. 10, 128 (1965).

Holm, R. T.

Lee, El-Hang

Mandel, L.

Mueller, W.

T. Hirschfeld, M. J. Block, W. Mueller, J. Histochem. Cytochem. 25, 719 (1977).
[CrossRef] [PubMed]

Palik, E. D.

Perez, O. G.

Rosasco, G. J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 39–50.

Zolotarev, V. M.

V. M. Zolotarev, Opt. Spectrosc. 37, 295 (1974).

Appl. Opt. (5)

Appl. Spectrosc. (2)

Can. Spectrosc. (1)

T. Hirschfeld, Can. Spectrosc. 10, 128 (1965).

J. Histochem. Cytochem. (1)

T. Hirschfeld, M. J. Block, W. Mueller, J. Histochem. Cytochem. 25, 719 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

Opt. Spectrosc. (1)

V. M. Zolotarev, Opt. Spectrosc. 37, 295 (1974).

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 39–50.

P. Grivet, in Proceedings of the Symposium on Modern Optics, Jerome. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), p. 467.

N. J. Harrick, Internal Reflection Spectroscopy (Interscience-Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration for excitation of fluorescence by evanescent waves where n1 > n2 > n3. The incident angle θi is greater than the critical angle of the incident radiation θci The observation angle θo is scanned from 0° to 90° and 0° to −90°. The critical angle of the fluorescence radiation θcf does not need to be equal to θci. The dye solution can be replaced by monodispersed spheres impregnated with dye or a liquid containing such spheres.

Fig. 2
Fig. 2

Experimental angular distribution of the fluorescence intensity from a dye solution in contact with the prism with θi = 80° and different combinations of incident and scattered polarizations designated by V for vertical and H for horizontal to the scattering plane of Fig. 1.

Fig. 3
Fig. 3

Theoretical angular distribution of the fluorescence intensity calculated from Eqs. (1) and (2) or Eqs. (13) and (14) with the parameters appropriate to the experimental conditions. The peak of the H-H curve was normalized to that of the experimental H-H curve of Fig. 2.

Fig. 4
Fig. 4

The ratios of observed fluorescence intensity from the dye solution with different fluorescence polarizations and θi, with the incident polarization fixed, and with θo = 0°. For an isotropic liquid, totally depolarized fluorescence is expected. Deviation of these ratios from unity implies preferential alignment of dye molecules at the prism surface.

Fig. 5
Fig. 5

Observed angular distribution of fluorescence from dyed monodispersed spheres (a = 806 nm) placed on the flat surface of the prism (λi = 488 nm and θi = 80°). For λf = 525 nm, the air–prism critical angle is θ c f 31, while the particle–prism critical angle is θ c f 21. The incident polarization was either H or V, and the fluorescence polarization was unanalyzed U.

Fig. 6
Fig. 6

Experimental angular distribution of fluorescence from dyed monodispersed spheres placed on the prism. The effect of increasing the packing density is shown in curves (a) through (c). The radii of the particles for (a) and (b) are 806 nm, and those for (c) are 460 nm. The air–prism and particle–prism critical angles at the fluorescence wavelength are θ c f 31 and θ c f 21, respectively. The polarization combination is H-U.

Fig. 7
Fig. 7

The measured angular distribution of fluorescence from dyed monodispersed spheres (a = 806 nm) placed on the prism with different combinations for the incident and scattered polarizations, θi = 80°, λf = 525 nm, λi = 488 nm, and a sparse packing density.

Fig. 8
Fig. 8

The experimental angular distribution of fluorescence from a liquid solution containing dyed monodispersed spheres (hydrosol) of a = 806 nm. The liquid–prism critical angle at λfis θ c f 31. The intensity fluctuation at 1 Hz is indicated by the vertical lines and caused by Brownian motion of the spheres within the laser illuminated volume (product of dpi and illuminated area).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I F ( θ i , θ o ) = α T ( θ i ) 2 η T ( θ o ) 2 ( 2 / d p i + 2 / d p f ) - 1 ;
I F ( θ i , θ o ) = α T ( θ i ) 2 η T ( θ o ) 2 ( d p i / 2 ) ;
I F ( θ i , θ o ) = α T ( θ i ) 2 η T ( θ o ) 2 ( d p f / 2 ) ;
I F ( θ i , θ o ) = α T ( θ i ) 2 η T ( θ o ) 2 ( t ) .
T ( θ i ) V 2 = n 21 cos θ i t ( θ i ) 2 ;
T ( θ i ) H 2 = n 21 cos θ i t ( θ i ) 2 ( sin 2 θ i ± cos 2 θ i ) ,
t ( θ i ) 2 = | 2 sin θ i cos θ i sin ( θ i + θ i ) | 2 ;
t ( θ i ) 2 = | 2 s i n θ i c o s θ i sin ( θ i + θ i ) cos ( θ i - θ i ) | 2 .
I F ( θ c i , θ c f ) I F ( 0 , 0 ) = T ( θ i = θ c i ) V 2 T ( θ o = θ c f ) V 2 T ( θ i = 0 ) V 2 T ( θ o = 0 ) V 2 = ( 1 + n 21 ) 4 ( 1 - n 21 2 ) ;
I F ( θ c i , θ c f ) I F ( 0 , 0 ) = T ( θ i = θ ci ) H 2 T ( θ o = θ cf ) H 2 T ( θ i = 0 ) H 2 , T ( θ o = 0 ) H 2 = ( 1 + n 21 ) 4 n 21 4 ( 1 - n 21 2 ) .
[ d eff ( θ i ) ] V = n 21 cos θ i 0 t t ( θ i ) 2 exp [ - ( 2 / d p i ) z ] d z ,
[ d eff ( θ i ) ] H = n 21 cos θ i 0 t t ( θ i ) 2 ( sin 2 θ i - cos 2 θ i ) exp [ - ( 2 / d p i ) z ] d z ,
I F ( θ i , θ o ) = α [ d eff ( θ i ) d p i / 2 ] η [ d eff ( θ o ) d p f / 2 ] ( 2 d p i + 2 d p f ) - 1 ;
I F ( θ i , θ o ) = α [ d eff ( θ i ) d p i / 2 ] η T ( θ o ) 2 ( d p i 2 ) .
[ d eff ( θ i ) d p i / 2 ] V = 4 n 21 cos 2 θ i 1 - n 21 2 ,
[ d eff ( θ i ) d p i / 2 ] H = 4 n 21 cos θ i ( 2 sin 2 θ i - n 21 2 ) n 21 4 cos 2 θ i + sin 2 θ i - n 21 2 .

Metrics