Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Mullaney, P. N. Dean, Appl. Opt. 15, 2361 (1969).
    [Crossref]
  2. R. A. Meyer, A. Brunsting, Biophys. J. 15, 191 (1975).
    [Crossref] [PubMed]
  3. B. Turke, G. Seger, M. Achatz, W. V. Seelen, Appl. Opt. 17, 2754 (1978).
    [Crossref] [PubMed]
  4. A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
    [Crossref] [PubMed]
  5. A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
    [Crossref]
  6. R. A. Meyer, Appl. Opt. 16, 2036 (1977).
    [Crossref] [PubMed]
  7. R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).
  8. E. D. Korn, Science 153, 1491 (1966).
    [Crossref] [PubMed]
  9. A. Brunsting, P. F. Mullaney, Biophys. J. 14, 439 (1974).
    [Crossref] [PubMed]
  10. J. C. Lin, A. W. Guy, IEEE Trans. Biomed. Eng. BE-21, 43 (1974).
    [Crossref]
  11. D. J. Arndt-Jovin, T. M. Jovin, Ann. Rev. Biophys. Bioeng. 7, 527 (1978) and references therein.
    [Crossref]

1978 (2)

B. Turke, G. Seger, M. Achatz, W. V. Seelen, Appl. Opt. 17, 2754 (1978).
[Crossref] [PubMed]

D. J. Arndt-Jovin, T. M. Jovin, Ann. Rev. Biophys. Bioeng. 7, 527 (1978) and references therein.
[Crossref]

1977 (1)

1975 (1)

R. A. Meyer, A. Brunsting, Biophys. J. 15, 191 (1975).
[Crossref] [PubMed]

1974 (2)

A. Brunsting, P. F. Mullaney, Biophys. J. 14, 439 (1974).
[Crossref] [PubMed]

J. C. Lin, A. W. Guy, IEEE Trans. Biomed. Eng. BE-21, 43 (1974).
[Crossref]

1972 (1)

1969 (1)

P. F. Mullaney, P. N. Dean, Appl. Opt. 15, 2361 (1969).
[Crossref]

1966 (1)

E. D. Korn, Science 153, 1491 (1966).
[Crossref] [PubMed]

1954 (1)

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

1951 (1)

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Achatz, M.

Aden, A. L.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Arndt-Jovin, D. J.

D. J. Arndt-Jovin, T. M. Jovin, Ann. Rev. Biophys. Bioeng. 7, 527 (1978) and references therein.
[Crossref]

Barer, R.

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Brunsting, A.

R. A. Meyer, A. Brunsting, Biophys. J. 15, 191 (1975).
[Crossref] [PubMed]

A. Brunsting, P. F. Mullaney, Biophys. J. 14, 439 (1974).
[Crossref] [PubMed]

A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
[Crossref] [PubMed]

Dean, P. N.

P. F. Mullaney, P. N. Dean, Appl. Opt. 15, 2361 (1969).
[Crossref]

Guy, A. W.

J. C. Lin, A. W. Guy, IEEE Trans. Biomed. Eng. BE-21, 43 (1974).
[Crossref]

Joseph, S.

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Jovin, T. M.

D. J. Arndt-Jovin, T. M. Jovin, Ann. Rev. Biophys. Bioeng. 7, 527 (1978) and references therein.
[Crossref]

Kerker, M.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Korn, E. D.

E. D. Korn, Science 153, 1491 (1966).
[Crossref] [PubMed]

Lin, J. C.

J. C. Lin, A. W. Guy, IEEE Trans. Biomed. Eng. BE-21, 43 (1974).
[Crossref]

Meyer, R. A.

R. A. Meyer, Appl. Opt. 16, 2036 (1977).
[Crossref] [PubMed]

R. A. Meyer, A. Brunsting, Biophys. J. 15, 191 (1975).
[Crossref] [PubMed]

Mullaney, P. F.

A. Brunsting, P. F. Mullaney, Biophys. J. 14, 439 (1974).
[Crossref] [PubMed]

A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
[Crossref] [PubMed]

P. F. Mullaney, P. N. Dean, Appl. Opt. 15, 2361 (1969).
[Crossref]

Seelen, W. V.

Seger, G.

Turke, B.

Ann. Rev. Biophys. Bioeng. (1)

D. J. Arndt-Jovin, T. M. Jovin, Ann. Rev. Biophys. Bioeng. 7, 527 (1978) and references therein.
[Crossref]

Appl. Opt. (4)

Biophys. J. (2)

A. Brunsting, P. F. Mullaney, Biophys. J. 14, 439 (1974).
[Crossref] [PubMed]

R. A. Meyer, A. Brunsting, Biophys. J. 15, 191 (1975).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. C. Lin, A. W. Guy, IEEE Trans. Biomed. Eng. BE-21, 43 (1974).
[Crossref]

J. Appl. Phys. (1)

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Q. J. Microsc. Sci. (1)

R. Barer, S. Joseph, Q. J. Microsc. Sci. 95, 399 (1954).

Science (1)

E. D. Korn, Science 153, 1491 (1966).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Thinly coated sphere model used in this study. The outer sphere or coating with a refractive index relative to the suspending medium of m2 corresponds to the cell membrane and the inner sphere with a relative refractive index of m1 corresponds to the cell body. The cell diameter has a size parameter ν = 2πb/λ, where b is the radius of the outer sphere, and λ is the wavelength of the illumination in the suspending medium. The membrane thickness has a size parameter δ = 2π (ba)/λ, where a is the radius of the inner sphere.

Fig. 2
Fig. 2

The logarithm of the light-scatter intensity is plotted as a function of scattering angle and normalized at a scattering angle of θ = 0°. (a) Light-scattering patterns for a hollow sphere corresponding to a cell membrane without a cell body and for a homogeneous sphere corresponding to the cell body without the cell membrane. The hollow sphere has parameters ν = 80, δ = 0.16, m1 = 1.00, m2 = 1.14. The homogeneous sphere has parameters ν = 80, δ = 0, m1 = m2 = 1.02. (b) Light-scattering pattern for a thinly coated sphere. The thinly coated sphere has parameters ν = 80, δ = 0.16, m1 = 1.02, m2 = 1.16 and corresponds to the superposition of the hollow sphere (cell membrane only) and homogeneous sphere (cell body) used in Fig. 2(a). The envelopes of the maxima structures for the homogeneous sphere(— – —) and the hollow sphere(– – – –) were obtained from Fig. 2(a) and adjusted for relative light-scatter cross sections. For an illumination wavelength of approximately 0.52 μm and a suspending medium refractive index of 1.33, these parameters correspond to a 10-μm diameter cell and a 100-Å thick membrane. The plotting increment is 0.2°.

Fig. 3
Fig. 3

Parametric plot of backscatter intensity as a function of membrane refractive index for different membrane thicknesses. The cell diameter and interior refractive index were fixed at ν = 60 [2b = 7.5 μm] and m1 = 1.04. The backscatter signal corresponds to the radiation detected by a circular detector which covers the angular region from 160° to 180°. The forwardscattered intensity for this same range of membrane properties is also shown. The forward-scattered signal corresponds to the radiation detected by an annular ring detector which covers the angular region from 1° to 2°. The values in brackets assume an illumination wavelength of approximately 0.52 μm and a suspending medium refractive index of 1.33.

Tables (1)

Tables Icon

Table I Parameters Used in Backscatter Calculations a

Metrics