Abstract

Trace element analysis based on laser ablation and selectively excited radiation (tablaser) is proposed as a new and reliable microultratrace technique for quantitative in situ element analysis. Measurements of trace quantities of chromium in samples of NBS standard reference steel, doped skim milk powder, and doped flour have been undertaken. A linear 45° slope dependence of signal vs concentration that extends beyond 1% in the case of chromium was observed. Although the present sensitivity limit is in the ppm range, improved overlap between the probing dye laser beam and the wave of atomized material combined with a better design of the optical system could reduce the detection limit of the tablaser to the ppb range. This would correspond to an absolute detection limit of about 10−16 g. An important feature of this new technique is its relative freedom from chemical matrix effects, which suggests the possibility of a unversal calibration curve for all elements irrespective of the substrate matrix in which they are contained. This technique is also adaptable to multielement analysis.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, Appl. Spectrosc. 16, 59 (1962).
  2. E. F. Runge et al., Spectrochim. Acta. 20, 733 (1964).
    [CrossRef]
  3. E. H. Piepmeier, D. E. Osten, Appl. Spectrosc. 25, 642 (1971).
    [CrossRef]
  4. K. Marich et al., Anal. Chem. 42, 1775 (1970).
    [CrossRef]
  5. E. H. Piepmeier, H. V. Malmstadt, Anal. Chem. 41, 700 (1969).
    [CrossRef]
  6. D. E. Osten, E. H. Piepmeier, Appl. Spectrosc. 27, 165 (1973).
    [CrossRef]
  7. T. Ishizuka et al., Anal. Chem. 49, 1339 (1977).
    [CrossRef]
  8. L. Hillenkamp et al., Appl. Phys. 8, 341 (1975).
    [CrossRef]
  9. S. J. Weeks et al., Anal. Chem. 50, 360 (1978).
    [CrossRef]
  10. W. F. Fairbank et al., J. Opt. Soc. Am. 65, 199 (1975).
    [CrossRef]
  11. J. A. Gelbwachs et al., Appl. Phys. Lett. 30, 489 (1977).
    [CrossRef]
  12. J. P. Hohimer, P. J. Hargis, Appl. Phys. Lett. 30, 344 (1977).
    [CrossRef]
  13. R. M. Measures, J. Appl. Phys. 39, 5232 (1968).
    [CrossRef]
  14. J. W. Daily, Appl. Opt. 16, 568 (1977).
    [CrossRef] [PubMed]
  15. H. S. Kwong, “Free Expansion of Atomic Species in Vacuum after Laser Ablation,” in preparation.
  16. R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
    [CrossRef]
  17. F. De Martini, K. P. Wacks, Rev. Sci. Instrum. 38, 866 (1967).
    [CrossRef]
  18. H. S. Kwong, R. M. Measures, “Trace Element Laser Microprobe Having High Sensitivity and Freedom from Chemical Matrix Effects,” (Anal. Chem. in press 1979).
    [CrossRef]
  19. A. B. Whitehead, H. H. Heady, Appl. Spectrosc. 22, 7 (1968).
    [CrossRef]
  20. N. Inoue et al., Plasma Phys. 13, 84 (1971).
    [CrossRef]
  21. D. C. McDonald, Anal. Chem. 49, 1336 (1977).
    [CrossRef]

1978 (1)

S. J. Weeks et al., Anal. Chem. 50, 360 (1978).
[CrossRef]

1977 (6)

T. Ishizuka et al., Anal. Chem. 49, 1339 (1977).
[CrossRef]

J. A. Gelbwachs et al., Appl. Phys. Lett. 30, 489 (1977).
[CrossRef]

J. P. Hohimer, P. J. Hargis, Appl. Phys. Lett. 30, 344 (1977).
[CrossRef]

J. W. Daily, Appl. Opt. 16, 568 (1977).
[CrossRef] [PubMed]

R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
[CrossRef]

D. C. McDonald, Anal. Chem. 49, 1336 (1977).
[CrossRef]

1975 (2)

1973 (1)

1971 (2)

1970 (1)

K. Marich et al., Anal. Chem. 42, 1775 (1970).
[CrossRef]

1969 (1)

E. H. Piepmeier, H. V. Malmstadt, Anal. Chem. 41, 700 (1969).
[CrossRef]

1968 (2)

1967 (1)

F. De Martini, K. P. Wacks, Rev. Sci. Instrum. 38, 866 (1967).
[CrossRef]

1964 (1)

E. F. Runge et al., Spectrochim. Acta. 20, 733 (1964).
[CrossRef]

1962 (1)

F. Brech, L. Cross, Appl. Spectrosc. 16, 59 (1962).

Brech, F.

F. Brech, L. Cross, Appl. Spectrosc. 16, 59 (1962).

Cross, L.

F. Brech, L. Cross, Appl. Spectrosc. 16, 59 (1962).

Daily, J. W.

De Martini, F.

F. De Martini, K. P. Wacks, Rev. Sci. Instrum. 38, 866 (1967).
[CrossRef]

Drewell, N.

R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
[CrossRef]

Fairbank, W. F.

Gelbwachs, J. A.

J. A. Gelbwachs et al., Appl. Phys. Lett. 30, 489 (1977).
[CrossRef]

Hargis, P. J.

J. P. Hohimer, P. J. Hargis, Appl. Phys. Lett. 30, 344 (1977).
[CrossRef]

Heady, H. H.

Hillenkamp, L.

L. Hillenkamp et al., Appl. Phys. 8, 341 (1975).
[CrossRef]

Hohimer, J. P.

J. P. Hohimer, P. J. Hargis, Appl. Phys. Lett. 30, 344 (1977).
[CrossRef]

Inoue, N.

N. Inoue et al., Plasma Phys. 13, 84 (1971).
[CrossRef]

Ishizuka, T.

T. Ishizuka et al., Anal. Chem. 49, 1339 (1977).
[CrossRef]

Kwong, H. S.

R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
[CrossRef]

H. S. Kwong, “Free Expansion of Atomic Species in Vacuum after Laser Ablation,” in preparation.

H. S. Kwong, R. M. Measures, “Trace Element Laser Microprobe Having High Sensitivity and Freedom from Chemical Matrix Effects,” (Anal. Chem. in press 1979).
[CrossRef]

Malmstadt, H. V.

E. H. Piepmeier, H. V. Malmstadt, Anal. Chem. 41, 700 (1969).
[CrossRef]

Marich, K.

K. Marich et al., Anal. Chem. 42, 1775 (1970).
[CrossRef]

McDonald, D. C.

D. C. McDonald, Anal. Chem. 49, 1336 (1977).
[CrossRef]

Measures, R. M.

R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
[CrossRef]

R. M. Measures, J. Appl. Phys. 39, 5232 (1968).
[CrossRef]

H. S. Kwong, R. M. Measures, “Trace Element Laser Microprobe Having High Sensitivity and Freedom from Chemical Matrix Effects,” (Anal. Chem. in press 1979).
[CrossRef]

Osten, D. E.

Piepmeier, E. H.

Runge, E. F.

E. F. Runge et al., Spectrochim. Acta. 20, 733 (1964).
[CrossRef]

Wacks, K. P.

F. De Martini, K. P. Wacks, Rev. Sci. Instrum. 38, 866 (1967).
[CrossRef]

Weeks, S. J.

S. J. Weeks et al., Anal. Chem. 50, 360 (1978).
[CrossRef]

Whitehead, A. B.

Anal. Chem. (5)

K. Marich et al., Anal. Chem. 42, 1775 (1970).
[CrossRef]

E. H. Piepmeier, H. V. Malmstadt, Anal. Chem. 41, 700 (1969).
[CrossRef]

T. Ishizuka et al., Anal. Chem. 49, 1339 (1977).
[CrossRef]

S. J. Weeks et al., Anal. Chem. 50, 360 (1978).
[CrossRef]

D. C. McDonald, Anal. Chem. 49, 1336 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

L. Hillenkamp et al., Appl. Phys. 8, 341 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

J. A. Gelbwachs et al., Appl. Phys. Lett. 30, 489 (1977).
[CrossRef]

J. P. Hohimer, P. J. Hargis, Appl. Phys. Lett. 30, 344 (1977).
[CrossRef]

Appl. Spectrosc. (4)

J. Appl. Phys. (1)

R. M. Measures, J. Appl. Phys. 39, 5232 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. A (1)

R. M. Measures, N. Drewell, H. S. Kwong, Phys. Rev. A 16, 1093 (1977).
[CrossRef]

Plasma Phys. (1)

N. Inoue et al., Plasma Phys. 13, 84 (1971).
[CrossRef]

Rev. Sci. Instrum. (1)

F. De Martini, K. P. Wacks, Rev. Sci. Instrum. 38, 866 (1967).
[CrossRef]

Spectrochim. Acta. (1)

E. F. Runge et al., Spectrochim. Acta. 20, 733 (1964).
[CrossRef]

Other (2)

H. S. Kwong, R. M. Measures, “Trace Element Laser Microprobe Having High Sensitivity and Freedom from Chemical Matrix Effects,” (Anal. Chem. in press 1979).
[CrossRef]

H. S. Kwong, “Free Expansion of Atomic Species in Vacuum after Laser Ablation,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

tablaser—basic concept.

Fig. 2
Fig. 2

Laser induced resonance fluorescent signal vs delay time at fixed location, 0.55 cm out from target along ruby laser axis.

Fig. 3
Fig. 3

Schematic of tablaser facility.

Fig. 4
Fig. 4

Target, ablation, probing, and viewing geometry.

Fig. 5
Fig. 5

Electron beam micrograph of crater generated by laser ablation (single shot).

Fig. 6
Fig. 6

Partial energy level diagram for chromium Cr I.

Fig. 7
Fig. 7

Laser induced resonance fluorescent signal vs delay time at a location 0.89 cm along an axis at 52° to ruby laser axis (see small insert).

Fig. 8
Fig. 8

Typical photomultiplier signals: (a) resonance fluorescence + Mie scattered dye laser signal; (b) resonance fluorescence; (c) dye laser signal.

Fig. 9
Fig. 9

Resonance fluorescent signal vs relative chromium concentration (ppm).

Fig. 10
Fig. 10

Two-dimensional side view of the neutral wavefront showing the present observation area, and the projected observation window of the corresponding density profile is indicated at the bottom.

Metrics