Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Young, Appl. Opt. 10, 2763 (1971).
    [CrossRef] [PubMed]
  2. OSA Committee on Colorimetry, The Science of Color (Optical Society of America, Washington, D.C., 1963).
  3. R. M. Scott, Photogr. Sci. Eng. 3, 201 (1959).
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 120.
  5. R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).
  6. R. E. Swing, D. P. Rooney, J. Opt. Soc. Am. 58, 629 (1968).
    [CrossRef]
  7. K. Sayanagi, J. Opt. Soc. Am. 5, 1091 (1967).
    [CrossRef]

1971 (1)

1968 (1)

1967 (1)

K. Sayanagi, J. Opt. Soc. Am. 5, 1091 (1967).
[CrossRef]

1962 (1)

R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).

1959 (1)

R. M. Scott, Photogr. Sci. Eng. 3, 201 (1959).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 120.

Lamberts, R. L.

R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).

Rooney, D. P.

Sayanagi, K.

K. Sayanagi, J. Opt. Soc. Am. 5, 1091 (1967).
[CrossRef]

Scott, R. M.

R. M. Scott, Photogr. Sci. Eng. 3, 201 (1959).

Swing, R. E.

Young, M.

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. Soc. Motion Pict. Telev. Eng. (1)

R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).

Photogr. Sci. Eng. (1)

R. M. Scott, Photogr. Sci. Eng. 3, 201 (1959).

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 120.

OSA Committee on Colorimetry, The Science of Color (Optical Society of America, Washington, D.C., 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MTF for a diffraction limited circular lens plotted on a log–log scale. Spatial frequency is in units of cycles per radian with the cutoff frequency as a reference.

Fig. 2
Fig. 2

MTF for a circular aperture plotted on same log–log scale as in Fig. 1. The spatial frequency is normalized to aperture diameter.

Fig. 3
Fig. 3

Graphic solution for the MTF of a pinhole camera with pinhole diameter of 0.4 mm, camera F/number of 200, and λ = 0.5 μm. See text for details on various steps.

Fig. 4
Fig. 4

Graphic design of an F/200 pinhole camera with pinhole diameters of 0.2 mm (curve D) and 0.4 mm (curve E).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

TF ( lens ) ( f ) = 2 π { cos - 1 ( f / f c ) - ( f / f c ) [ 1 - ( f / f c ) 2 ] 1 / 2 } ,
TF ( apert . ) ( f ) = 2 J 1 ( π d p f ) / d p f π ,
TF pinhole camera ( σ ) = F e ( σ ) Bessinc [ π d ( 1 + Z 2 / Z 1 ) σ F e ( σ ) ] ,
TF pinhole camera ( f ) = TF ( lens ) ( f ) × TF ( apert . ) [ f × TF ( lens ) ( f ) ] .

Metrics