Abstract

Experiments carried out by Bucaro et al. demonstrate that an optical-fiber acoustic wave detector with a plastic coating several times its diameter exhibits greatly increased sensitivity compared with an uncoated fiber. In this paper we show that this effect should be expected because the plastic is much more compressible than the glass fiber. With a very thick coating of a Teflonlike plastic, the calculated longitudinal strain produced in the fiber by hydrostatic pressure is thirteen times larger than for an uncoated fiber. The effective phase change is increased by the much larger factor of 38 because the coated fiber expands laterally instead of contracting.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, E. F. CaromeJ. Accoust. Soc. Am. 62, 1302 (1977).
    [CrossRef]
  2. J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
    [CrossRef] [PubMed]
  3. J. A. Bucaro, E. F. Carome, Appl. Opt. 17, 330 (1978).
    [CrossRef] [PubMed]
  4. J. A. Bucaro, T. R. Hickman, Appl. Opt. 18, 938 (1979).
    [CrossRef] [PubMed]
  5. S. P. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), p. 68.
  6. A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 354.

1979 (1)

1978 (1)

1977 (2)

J. A. Bucaro, H. D. Dardy, E. F. CaromeJ. Accoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
[CrossRef] [PubMed]

Bucaro, J. A.

Carome, E. F.

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, E. F. CaromeJ. Accoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
[CrossRef] [PubMed]

Goodier, J.

S. P. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), p. 68.

Hickman, T. R.

Timoshenko, S. P.

S. P. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), p. 68.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 354.

Appl. Opt. (3)

J. Accoust. Soc. Am. (1)

J. A. Bucaro, H. D. Dardy, E. F. CaromeJ. Accoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

Other (2)

S. P. Timoshenko, J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970), p. 68.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

A calculation of (Δϕ)clad/(Δϕ)unclad as a function of b/a for a plastic-coated glass fiber. E g = 6.2 × 10 10 N / m 2 , ν g = 0.24 , E p = 0.076 × 10 10 N / m 2 , ν p = 0.458 , p 11 = 0.13 ,             p 44 = - 0.075 , n = 1.46.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

σ r p r = b = - p .
f σ z g + ( 1 - f ) σ z p = - p .
σ r g r = a = σ r p r = a ,
u g r = a = u p r = a ,
σ r g = σ θ g = - q .
σ r p = - ( q - p ) f b 2 ( 1 - f ) r 2 + ( q f - p ) 1 - f ,
σ θ p = ( q - p ) f b 2 ( 1 - f ) r 2 + ( q f - p ) 1 - f .
σ r p + σ θ p = 2 ( q f - p ) / ( 1 - f ) .
z = σ z g E g - ν g E g ( σ r g + σ θ g ) = σ z p E p - ν p E p ( σ r p + σ θ p ) .
σ z g E g - σ z p E p = 2 ν p ( 1 - f ) E p p - ( 2 v g E g + 2 f ν p ( 1 - f ) E p ) q .
σ z g = - ( 1 - 2 ν p ) p + 2 [ ( 1 - f ) ν g E p / E g + f ν p ] q f + ( 1 - f ) E p / E g .
f 1 ,             E p / E g 1.
σ z g ( 1 - 2 ν p ) p f + ( 1 - f ) E p / E g .
σ r g = σ θ g = - q - p ,
σ z g 1 - 2 ( 1 - f ) ν p + 2 ( 1 - f ) ν g E p / E g f + ( 1 - f ) E p / E g p .
z g = - ( 1 - 2 ν p ) p f E g + ( 1 - f ) E p θ g = r g = - ν g z g = ν g ( 1 - 2 ν p ) p f E g + ( 1 - f ) E p } ,
z g = - 1 - 2 ( 1 - f ) ν p - 2 f ν g f E g + ( 1 - f ) E p p θ g = r g = p ν g ( 1 - 2 ν p ) - f ( 1 - ν g - 2 ν g ν p ) - ( 1 + ν g ) ( 1 - 2 ν g ) ( 1 - f ) E p / E g f E g + ( 1 - f ) E p .
z g z g 0 = 1 + [ 4 f ( 1 - ν p 2 ) A ( 1 - 2 ν p ) ] ( ν p - ν g ) 1 + { 2 f ( 1 - f ) ( 1 - 2 ν p ) [ A ( f E g / E p - 1 ) + 1 } ( ν p - ν g ) 2 ,
A = ( 1 + ν p ) [ 1 + f ( 1 - 2 ν p ) ] + E p E g ( 1 + ν g ) × ( 1 - 2 ν g ) ( 1 - f ) .
r g = θ g = - ν z g - q ( 1 + ν g ) ( 1 - 2 ν g ) E g ,
ϕ = ( ω l ) / v .
( Δ ϕ ) / ϕ = [ ( Δ l ) / l ] - [ ( Δ ν ) / v ] = z g + [ ( Δ n ) / n ] ,
Δ ( 1 n 2 ) i j = p i j k l k l .
p 12 = p 11 - 2 p 44 .
Δ ( 1 n 2 ) 11 = Δ ( 1 n 2 ) 22 = - 2 Δ n n 3 ,
Δ ϕ ϕ = 3 - n 2 2 [ 1 ( p 11 + p 12 ) + 3 p 12 ] ,
Δ ϕ ϕ = 3 - n 2 2 [ 2 1 ( p 11 - p 44 ) + 3 ( p 11 - 2 p 44 ) ] .
( Δ ϕ ) / ϕ = 3 - 0.44 1 - 0.30 3 = 0.70 3 - 0.44 1 .
3 = - 1.1 × 10 - 10 p , 1 = 0.154 × 10 - 10 p , ( Δ ϕ ) / ϕ = - 8.38 × 10 - 11 p .
E g = 6.2 × 10 10 N / m 2 , ν g = 0.24 , E p = 0.076 × 10 10 N / m 2 , ν p = 0.458 , p 11 = 0.13 ,             p 44 = - 0.075 , n = 1.46.
θ g r = a = θ p r = a
[ σ θ g E g - ν g E g ( σ r g + σ z g ) ] | r = a = [ σ θ p E p - ν p E p ( σ r p + σ z p ) ] | r = a
ν p σ z p E p - ν g σ z g E g = - 2 ( 1 - f ) E p p + [ ( 1 + f ) + ν p ( 1 - f ) ( 1 - f ) E p + 1 - ν g E g ] q .
( ν p - ν g ) σ z g E g = - 2 ( 1 - ν p 2 ) ( 1 - f ) E p p + { ( 1 + ν p ) [ 1 + f ( 1 - 2 ν p ) ] ( 1 - f ) E p + 1 - ν g - 2 ν g ν p E g } q ,
q = [ 2 ( 1 - ν p 2 ) ( 1 - f ) E p - ( ν p - ν g ) ( 1 - 2 ν p ) f E g + ( 1 - f ) E p ] p B ,
B = ( 1 + ν p ) [ 1 + f ( 1 - 2 ν p ) ] ( 1 - f ) E p + 1 - ν g - 2 ν g ν p E g + 2 ( ν p - ν g ) [ ( 1 - f ) ν g E p / E g + f ν p ] f E g + ( 1 - f ) E p .
q = 2 ( 1 - ν p ) 1 + ( 1 - 2 ν p ) f p .
q = 1.084 1 + 0.084 f p

Metrics