Abstract

Experimental results indicate that the stress-induced strain birefringence in borosilicate elliptically clad fibers arises from the expansion coefficient mismatch between the borosilicate elliptical cladding and the pure silica outer jacket. This strain birefringence cannot be annealed even after repeated thermal cycling. It is shown that, for a given dopant concentration, the birefringence depends primarily on the cladding ellipticity and increases linearly with increasing ellipticity and expansion coefficient mismatch.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
    [CrossRef]
  2. V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
    [CrossRef]
  3. H. Schneider, H. Harms, A. Papp, H. Aulich, Appl. Opt. 17, 3035 (1978).
    [CrossRef] [PubMed]
  4. W. A. Gambling, D. N. Payne, H. Matsumara, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TUD5.
  5. R. H. Stolen, A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).
    [CrossRef]
  6. V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).
  7. F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
    [CrossRef]
  8. E. Snitzer, H. Ostenberg, J. Opt. Soc. Am. 51, 499 (1961).
    [CrossRef]
  9. V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978); V. Ramaswamy, W. G. French, R. D. Standley, Appl. Opt. 17, 3014 (1978).
    [CrossRef] [PubMed]
  10. I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
    [CrossRef]
  11. G. W. Tasker, W. G. French, J. R. Simpson, P. Kaiser, H. M. Preshy, Appl. Opt. 17, 1836 (1978).
    [CrossRef] [PubMed]
  12. A. Papp, H. Harms, Appl. Opt. 14, 2406 (1975).
    [CrossRef] [PubMed]
  13. C. A. Burrus, R. D. Standley, Appl. Opt. 13, 2365 (1974).
    [CrossRef] [PubMed]
  14. L. Merker, J. Soc. Glass Technol. 43, 179 (1959); R. H. Doremus, Glass Science (Wiley, New York, 1973), Chap. 7, pp. 115–120.
  15. C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
    [CrossRef]

1979 (1)

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

1978 (6)

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978); V. Ramaswamy, W. G. French, R. D. Standley, Appl. Opt. 17, 3014 (1978).
[CrossRef] [PubMed]

G. W. Tasker, W. G. French, J. R. Simpson, P. Kaiser, H. M. Preshy, Appl. Opt. 17, 1836 (1978).
[CrossRef] [PubMed]

H. Schneider, H. Harms, A. Papp, H. Aulich, Appl. Opt. 17, 3035 (1978).
[CrossRef] [PubMed]

1975 (1)

1974 (1)

1973 (1)

R. H. Stolen, A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).
[CrossRef]

1972 (1)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

1971 (1)

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

1961 (1)

1959 (1)

L. Merker, J. Soc. Glass Technol. 43, 179 (1959); R. H. Doremus, Glass Science (Wiley, New York, 1973), Chap. 7, pp. 115–120.

Aggarwal, J. D.

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

Ashkin, A.

R. H. Stolen, A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).
[CrossRef]

Aulich, H.

Borelli, N. F.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Burrus, C. A.

French, W. G.

G. W. Tasker, W. G. French, J. R. Simpson, P. Kaiser, H. M. Preshy, Appl. Opt. 17, 1836 (1978).
[CrossRef] [PubMed]

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978); V. Ramaswamy, W. G. French, R. D. Standley, Appl. Opt. 17, 3014 (1978).
[CrossRef] [PubMed]

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumara, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TUD5.

Harms, H.

Kaiser, P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

G. W. Tasker, W. G. French, J. R. Simpson, P. Kaiser, H. M. Preshy, Appl. Opt. 17, 1836 (1978).
[CrossRef] [PubMed]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

Kapron, F. P.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Keck, D. B.

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

Macedo, P. B.

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

Matsumara, H.

W. A. Gambling, D. N. Payne, H. Matsumara, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TUD5.

Merker, L.

L. Merker, J. Soc. Glass Technol. 43, 179 (1959); R. H. Doremus, Glass Science (Wiley, New York, 1973), Chap. 7, pp. 115–120.

Moynihan, C. T.

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

Ostenberg, H.

Papp, A.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumara, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TUD5.

Pleibel, W.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Preshy, H. M.

Ramaswamy, V.

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978); V. Ramaswamy, W. G. French, R. D. Standley, Appl. Opt. 17, 3014 (1978).
[CrossRef] [PubMed]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Schnaus, V. E.

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

Schneider, H.

Simpson, J. R.

Snitzer, E.

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

C. A. Burrus, R. D. Standley, Appl. Opt. 13, 2365 (1974).
[CrossRef] [PubMed]

Stolen, R. H.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

R. H. Stolen, A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).
[CrossRef]

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Tasker, G. W.

Appl. Opt. (4)

Appl. Phys. Lett. (4)

I. P. Kaminow, V. Ramaswamy, Appl. Phys. Lett. 34, 268 (1979).
[CrossRef]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

V. Ramaswamy, I. P. Kaminow, P. Kaiser, W. G. French, Appl. Phys. Lett. 33, 814 (1978).
[CrossRef]

R. H. Stolen, A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).
[CrossRef]

Bell Syst. Tech. J. (1)

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, Bell Syst. Tech. J. 57, 635 (1978).

Electron. Lett. (1)

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978); V. Ramaswamy, W. G. French, R. D. Standley, Appl. Opt. 17, 3014 (1978).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

F. P. Kapron, N. F. Borelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[CrossRef]

J. Non-Cryst. Solids (1)

C. T. Moynihan, P. B. Macedo, J. D. Aggarwal, V. E. Schnaus, J. Non-Cryst. Solids 6, 322 (1971); C. K. Kurkjian, Phys. Chem. Glasses 4, 128 (1963).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Soc. Glass Technol. (1)

L. Merker, J. Soc. Glass Technol. 43, 179 (1959); R. H. Doremus, Glass Science (Wiley, New York, 1973), Chap. 7, pp. 115–120.

Other (1)

W. A. Gambling, D. N. Payne, H. Matsumara, in Digest of Topical Meeting on Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TUD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Micrograph of an elliptically clad fiber (48) cross section.

Fig. 2
Fig. 2

Beat photographs of a (48) graded-borosilicate elliptically clad fiber at various temperatures.

Fig. 3
Fig. 3

Beat length vs temperature for a (48) fiber. The initial thermal behavior is illustrated by curve 1. Curve 2 represents the thermal behavior of the same fiber a day later.

Fig. 4
Fig. 4

Beatlength vs temperature for a (34) fiber. The initial thermal cycling of the fiber resulted in the beatlength vs temperature curve illustrated by 1. Subsequent behavior is shown in curves 2 and 3, and the measurements were taken at a few days interval.

Fig. 5
Fig. 5

Modal birefringence vs the cladding ellipticity.

Tables (1)

Tables Icon

Table I Illustration of Index Profiles for our Experimental Fibers with the Measured Cladding Ellipticity and the Beatlength

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

= ( a x - a y ) / ( a x + a y ) .
B n x - n y .
L = λ / B ,
α B 2 O 3 + SiO 2 = q α B 2 O 3 + ( 1 - q ) α SiO 2 ,
B n x - n y = 1 2 n 3 ( p 12 - p 11 ) ( α B 2 O 3 - α SiO 2 ) q Δ T ,

Metrics