Abstract

This paper describes a practical method for determination of the geometrical form factor in the laser radar equation. Based on the laser radar equation and the statistical homogeneity in the spatial aerosol distribution, the factor can be calculated from the field observations by laser radar. Some examples of correction by this factor are also presented.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. H. Collis, P. B. Russel, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976).
  2. T. Halldórsson, J. Langerholc, Appl. Opt. 17, 240 (1978).
    [CrossRef] [PubMed]
  3. H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).
  4. R. T. H. Collis, Appl. Opt. 9, 1782 (1970).
    [CrossRef] [PubMed]
  5. J. Riegl, M. Bernhard, Appl. Opt. 13, 931 (1974).
    [CrossRef] [PubMed]
  6. J. Harms, W. Lahmann, C. Weitkamp, Appl. Opt. 17, 1131 (1978).
    [CrossRef] [PubMed]

1978 (2)

1974 (1)

1970 (1)

Bernhard, M.

Collis, R. T. H.

R. T. H. Collis, Appl. Opt. 9, 1782 (1970).
[CrossRef] [PubMed]

R. T. H. Collis, P. B. Russel, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976).

Halldórsson, T.

Harms, J.

Lahmann, W.

Langerholc, J.

Okuda, M.

H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).

Riegl, J.

Russel, P. B.

R. T. H. Collis, P. B. Russel, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976).

Sasano, Y.

H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).

Shimizu, H.

H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).

Takeuchi, N.

H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).

Weitkamp, C.

Appl. Opt. (4)

Other (2)

H. Shimizu, Y. Sasano, N. Takeuchi, M. Okuda, Opt. Quantum Electron. (submitted).

R. T. H. Collis, P. B. Russel, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the insufficient overlapping between a laser beam and the field of view of a receiving telescope.

Fig. 2
Fig. 2

Ratio of the received power multiplied by the square of the distance, which is equivalent to Y(R)β(R)/β(R*). (Here R = 50 m and R* = 300 m.) The hatched intervals are the periods between 10 h and 19h.

Fig. 3
Fig. 3

Geometrical form factor Y(R) calculated through Eq. (4). The solid curve represents Y(R) estimated from the periods with strong convective mixing. The error bar at each point means the standard deviation.

Fig. 4
Fig. 4

Vertical profiles of the aerosol backscattering coefficient with (solid line) and without (broken line) Y(R) correction. The measurement was made at Shinjuku on 11 August 1978. The number attached to each profile is the time (hours JST).

Fig. 5
Fig. 5

Vertical profiles of the aerosol backscattering coefficient at Tsukuba on 3 December 1978. Solid lines are with Y(R) correction, and broken lines are without Y(R) correction. The numbers give the time (hours and minutes JST).

Tables (1)

Tables Icon

Table I Specifications of the NIES Laser Radar System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P r ( R ) = P t L β ( R ) A Y ( R ) R - 2 T 2 ( R ) ,
Y ( R ) = [ P r ( R ) R 2 / P r ( R * ) R * 2 ] × [ β ( R * ) / β ( R ) ] .
[ β ( R * ) / β ( R ) ] ¯ = 1
Y ( R ) = [ P r ( R ) R 2 / P r ( R * ) R * 2 ] ¯ .

Metrics