Abstract

Many spectral filtering problems require assemblies of layers having thicknesses that bear no obvious relationship to one another. After a brief review of the optical methods used to monitor deposition of multilayers containing nonintegral thicknesses, we show that the performance of monitoring systems can be improved further by including the real-time calculation of any necessary layer thickness changes that may be required to compensate any errors that might still occur. The apparatus described consists of a minicomputer coupled to a rapid-scanning spectrometer. Such a procedure working in real time avoids the cumulative effects of successive errors. The technique is demonstrated in the production of a beam splitter.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Borgogno, E. Pelletier, J. Opt. Soc. Am. 68, 964 (1978).
    [CrossRef]
  2. B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 17, 1038 (1978).
    [CrossRef] [PubMed]
  3. C. Dufour, paper presented at Conférence Energie Solaire, Société Française des Thermiciens, 20 Octobre 1969, AFEDES, Paris;R. Badoual, P. Giacomo, Appl. Opt. 5, 63 (1966); J. A. Dobrowolski, J. Opt. Soc. Am. 60, 725A (1970); J. Opt. Soc. Am. 61, 1569A (1971); Proc. Soc. Photo-Opt. Instrum. Eng. 50, 179 (1975); D. B. McKenney, J. Opt. Soc. Am. 61, 666A (1971); E. Pelletier, P. Giacomo, Nouv. Rev. Opt. Appl. 3, 133 (1972); Vide 157, 1 (1972); E. Pelletier, Thèse C.N.R.S. (A.0.6051), Paris (1970).
    [CrossRef] [PubMed]
  4. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
    [CrossRef]
  5. B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 18, 3851 (1979), same issue.
    [PubMed]
  6. E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
    [CrossRef]

1979 (1)

1978 (2)

1976 (1)

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

1972 (1)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Borgogno, J. P.

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Dufour, C.

C. Dufour, paper presented at Conférence Energie Solaire, Société Française des Thermiciens, 20 Octobre 1969, AFEDES, Paris;R. Badoual, P. Giacomo, Appl. Opt. 5, 63 (1966); J. A. Dobrowolski, J. Opt. Soc. Am. 60, 725A (1970); J. Opt. Soc. Am. 61, 1569A (1971); Proc. Soc. Photo-Opt. Instrum. Eng. 50, 179 (1975); D. B. McKenney, J. Opt. Soc. Am. 61, 666A (1971); E. Pelletier, P. Giacomo, Nouv. Rev. Opt. Appl. 3, 133 (1972); Vide 157, 1 (1972); E. Pelletier, Thèse C.N.R.S. (A.0.6051), Paris (1970).
[CrossRef] [PubMed]

Fornier, A.

B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 18, 3851 (1979), same issue.
[PubMed]

B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 17, 1038 (1978).
[CrossRef] [PubMed]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Pelletier, E.

B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 18, 3851 (1979), same issue.
[PubMed]

B. Vidal, A. Fornier, E. Pelletier, Appl. Opt. 17, 1038 (1978).
[CrossRef] [PubMed]

J. P. Borgogno, E. Pelletier, J. Opt. Soc. Am. 68, 964 (1978).
[CrossRef]

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Roche, P.

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Vidal, B.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Nouv. Rev. Opt. Appl. (1)

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

Thin Solid Films (1)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972); H. A. Macleod, Opt. Acta 19, 1 (1972); Vacuum 27, 383 (1977); P. Bousquet, E. Pelletier, Thin Solid Films 50, 49 (1978).
[CrossRef]

Other (1)

C. Dufour, paper presented at Conférence Energie Solaire, Société Française des Thermiciens, 20 Octobre 1969, AFEDES, Paris;R. Badoual, P. Giacomo, Appl. Opt. 5, 63 (1966); J. A. Dobrowolski, J. Opt. Soc. Am. 60, 725A (1970); J. Opt. Soc. Am. 61, 1569A (1971); Proc. Soc. Photo-Opt. Instrum. Eng. 50, 179 (1975); D. B. McKenney, J. Opt. Soc. Am. 61, 666A (1971); E. Pelletier, P. Giacomo, Nouv. Rev. Opt. Appl. 3, 133 (1972); Vide 157, 1 (1972); E. Pelletier, Thèse C.N.R.S. (A.0.6051), Paris (1970).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Computed evolution of the spectral profile during construction of a seven-layer beam splitter of design: glass 103.4, 194.9, 89.2, 154.7, 67.7, 80.1, and 42.9 nm ZnS (odd layers) and cryolite (even layers) on glass (n = 1.52). The refractive indices are given in Ref. 6. Evolution of the spectral transmittance of the coating during deposition of the layers is indicated in this diagram. The profile was calculated and traced at thickness intervals of 1/20th of each layer. For convenience of comparison, they are displaced equally along the thickness axis. (It should be noted that the thickness interval varies with the total thickness of the appropriate layer.)

Fig. 2
Fig. 2

Measurement of the merit function f1 [Eq. (1)] registered during deposition of the first layer of the beam splitter. Deposition is terminated when the value passes through a minimum near zero.

Fig. 3
Fig. 3

Transmittance vs wavelength after termination of deposition of the first layer of the beam splitter. The required thickness is 103.4 nm (zinc sulfide) (see Fig. 1): + spectral profile measured after deposition; (a)–(g) spectral profile calculated for the actual thickness(d) e 1 * = 104.9 nm, and spectral profile for (a) 0.90 e 1 *, (b) 0.95 e 1 *, (c) 0.98 e 1 *, (e) 1.02 e 1 *, (f) 1.05 e 1 *, (g) 1.10 e 1 *.

Fig. 4
Fig. 4

Measurement of the merit function f2 [Eq. (1)] registered during deposition of the second layer of the beam splitter.

Fig. 5
Fig. 5

Transmittance vs wavelength after termination of deposition of the second layer of the beam splitter. The required thickness is 194.9 nm of cryolite (see Fig. 1): + spectral profile measured after deposition; (a)–(g) spectral profile calculated for the actual thickness (d) e 2 * = 196.8 nm, and spectral profile for (a) 0.90 e 2 *, (b) 0.95 e 2 *, (c) 0.98 e 2 *, (e) 1.02 e 2 *, (f) 1.05 e 2 *, and (g) 1.10 e 2 *.

Fig. 6
Fig. 6

Transmittance vs wavelength after termination of deposition of layer 6 of the beam splitter. The required thickness is 80.1 nm of cryolite (see Fig. 1): + spectral profile measured after deposition; (a)–(g) spectral profile calculated for the actual thickness(d) e 6 * = 76.6 nm, and spectral profile for (a) 0.90 e 6 *, (b) 0.95 e 6 *, (c) 0.98 e 6 *, (e) 1.02 e 6 *, (f) 1.05 e 6 *, and (g) 1.10 e 6 *.

Fig. 7
Fig. 7

Transmittance vs wavelength after termination of deposition of layer 7 of the beam splitter. The required thickness is 42.9 nm of zinc sulfide (see Fig. 1): + spectral profile measured after deposition; (a)–(b) spectral profile calculated around e7 = 42.9 nm for (a) 9.90e7, (b) 0.95e7, (c) 0.98e7, (d) e7, (e) 1.02e7, (f) 1.05e7, and (g) 1.10e7.

Tables (2)

Tables Icon

Table I Control Program of Production of the First Layer of the Beam Splitter of Fig. 1

Tables Icon

Table II Control Program of Production of the Second Layer of the Beam Splitter of Fig. 1 Taking Account of the Thickness Error Committed on the First Layer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f i = λ 1 λ 2 [ T i ( λ , e ) - T i * ( λ ) ] d λ .
f i + 1 ( e ) = λ 1 λ 2 [ T i + 1 ( λ , e i + 1 ) - T i + 1 ( λ , e ) ] d λ ,
f i + 1 ( e ) = λ 1 λ 2 [ T i + 1 ( λ , e i + 1 ) - T i + 1 ( λ , e ) ] d λ .
f i + 1 ( e ) = j Ω i + 1 , j [ T i + 1 ( λ j ) - T i + 1 ( λ j , e ) ] .

Metrics