Abstract

An optical circulator for near IR radiation was developed for optical transmission systems. This circulator consists of a 45° Faraday rotator using a YIG single crystal and two Glan-Taylor prisms. It has four nonreciprocal and two reciprocal pouts. Using reciprocal ports for bidirectional transmission systems with multimode fibers, which do not conserve light polarization, this circulator can receive any polarized light. Insertion losses of 1.5–2.3 dB among four nonreciprocal ports were obtained at 1.32-μm wavelength. An insertion loss 0.66 dB was estimated when nonpolarized light is transmitted, using one nonreciprocal and one reciprocal. port, at 1.32-μm wavelength.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
    [CrossRef]
  2. A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
    [CrossRef]
  3. H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
    [CrossRef]
  4. S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
    [CrossRef]
  5. P. C. Fletcher, D. L. Weisman, Appl. Opt. 4, 867 (1965).
    [CrossRef]
  6. W. R. Ribbens, Appl. Opt. 4, 1037 (1965).
    [CrossRef]
  7. W. B. Ribbens, D. Stodolsky, O. Gillespie, Appl. Opt. 6, 581 (1967).
    [CrossRef] [PubMed]
  8. J. H. Dennis, IEEE J. Quantum Electron. QE-8, 416 (1967).
    [CrossRef]
  9. A. Shibukawa, M. Kobayashi, Electron. Lett. 14, 816 (1978).
    [CrossRef]

1978 (2)

H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

A. Shibukawa, M. Kobayashi, Electron. Lett. 14, 816 (1978).
[CrossRef]

1977 (1)

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

1976 (1)

H. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

1967 (2)

1965 (2)

1964 (1)

S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
[CrossRef]

Dennis, J. H.

J. H. Dennis, IEEE J. Quantum Electron. QE-8, 416 (1967).
[CrossRef]

Fletcher, P. C.

Fujii, Y.

S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
[CrossRef]

Gillespie, O.

Hayashi, S.

H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

Horiguchi, H.

H. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

Iwamura, H.

H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

Iwasaki, H.

H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Katsui, A.

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

Kobayashi, M.

A. Shibukawa, M. Kobayashi, Electron. Lett. 14, 816 (1978).
[CrossRef]

Osanai, H.

H. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

Ribbens, W. B.

Ribbens, W. R.

Saito, S.

S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
[CrossRef]

Shibukawa, A.

A. Shibukawa, M. Kobayashi, Electron. Lett. 14, 816 (1978).
[CrossRef]

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

Stodolsky, D.

Weisman, D. L.

Yokoyama, K.

S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (3)

H. Horiguchi, H. Osanai, Electron. Lett. 12, 310 (1976).
[CrossRef]

A. Shibukawa, H. Iwamura, S. Hayashi, A. Katsui, Electron. Lett. 13, 721 (1977).
[CrossRef]

A. Shibukawa, M. Kobayashi, Electron. Lett. 14, 816 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. H. Dennis, IEEE J. Quantum Electron. QE-8, 416 (1967).
[CrossRef]

Opt. Quantum Electron. (1)

H. Iwamura, S. Hayashi, H. Iwasaki, Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Proc. IEEE (1)

S. Saito, K. Yokoyama, Y. Fujii, Proc. IEEE 52, 979 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical circulator construction

Fig. 2
Fig. 2

Faraday rotator.

Fig. 3
Fig. 3

Glan-Taylor prism light path: (a) incident at face a; (h) incident at face c.

Fig. 4
Fig. 4

Fabricated columnar circulator

Fig. 5
Fig. 5

Incident light polarization plane dependence of the output power from port 1 to port 2 and port 5.

Fig. 6
Fig. 6

Optical circulator application for bidirectional transmission systems, Port number are the same as in Fig. 1

Fig. 7
Fig. 7

Wavelength dependence of the insertion losses and isolation ratios.

Tables (1)

Tables Icon

Table I Optical Circulator Characteristics at 1.32 μm

Metrics