Abstract

A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceeding of the Third Symposium on Remote Sensing of Environment, October 1964 (U. Michigan, Ann Arbor, 1965).
  2. R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).
  3. R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  4. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  5. R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627 (Aug.1976).
  6. R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, 12–14 April 1966 (U. Michigan, Ann Arbor, 1966), pp. 273–283.
  7. E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
    [CrossRef]
  8. K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
    [CrossRef]
  9. K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
    [CrossRef]
  10. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  11. T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
    [CrossRef]
  12. W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
    [CrossRef]
  13. J. M. Hoell, W. R. Wade, R. T. Thompson, “Remote Sensing of Atmospheric SO2 Using the Differential Absorption Lidar Technique,” in Proceedings of International Conference on Environmental Sensing and Assessment, 14–19 September 1975, Las Vegas (IEEE, New York, 1976).
  14. K. Asai, T. Igarashi, Opt. Quantum Electron. 7, 211 (1975).
    [CrossRef]
  15. R. M. Schotland, U. Arizona; private communication, 14June1977.
  16. S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
    [CrossRef]
  17. J. A. Cooney, J. Appl. Met. 9, 182 (1970).
    [CrossRef]
  18. J. A. Cooney, J. Appl. Met. 10, 301 (1971).
    [CrossRef]
  19. S. H. Melfi, Appl. Opt. 11, 1605 (1972).
    [CrossRef] [PubMed]
  20. V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
    [CrossRef] [PubMed]
  21. C. P. Wang, “Application of Lasers in Atmospheric Probing,” in Acta Astronautica Vol. 1 (Pergamon, London, 1974).
    [CrossRef]
  22. F. S. Mills, R. N. Blais, A Theoretical/Experimental Program to Develop Active Optical Pollution Sensors, Final Report by Old Dominion U. on NASA LaRC research grant 1060 (1977).
    [PubMed]
  23. T. D. Wilkerson, J. Brasseur, “Proposed H2O Line List for Measurements of Strength and Width: λλ 7147–7321,” U. Maryland Technical Note BN-846 (Nov.1976).
  24. J. W. Brault, Kitt Peak National Observatory, Tucson, Ariz., W. S. Benedict, U. Maryland, College Park; private communication (1973).
  25. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).
  26. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).
  27. J. B. Mason, Appl. Opt. 14, 76 (1975).
    [PubMed]
  28. R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).
  29. E. E. Remsberg, L. Gordley, Appl. Opt. 17, 624 (1978).
    [CrossRef] [PubMed]

1978

1976

R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627 (Aug.1976).

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

1975

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

K. Asai, T. Igarashi, Opt. Quantum Electron. 7, 211 (1975).
[CrossRef]

J. B. Mason, Appl. Opt. 14, 76 (1975).
[PubMed]

1974

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

1973

1972

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

S. H. Melfi, Appl. Opt. 11, 1605 (1972).
[CrossRef] [PubMed]

1971

J. A. Cooney, J. Appl. Met. 10, 301 (1971).
[CrossRef]

1970

1969

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Asai, K.

K. Asai, T. Igarashi, Opt. Quantum Electron. 7, 211 (1975).
[CrossRef]

Benedict, W. S.

J. W. Brault, Kitt Peak National Observatory, Tucson, Ariz., W. S. Benedict, U. Maryland, College Park; private communication (1973).

Blais, R. N.

F. S. Mills, R. N. Blais, A Theoretical/Experimental Program to Develop Active Optical Pollution Sensors, Final Report by Old Dominion U. on NASA LaRC research grant 1060 (1977).
[PubMed]

Brasseur, J.

T. D. Wilkerson, J. Brasseur, “Proposed H2O Line List for Measurements of Strength and Width: λλ 7147–7321,” U. Maryland Technical Note BN-846 (Nov.1976).

Brault, J. W.

J. W. Brault, Kitt Peak National Observatory, Tucson, Ariz., W. S. Benedict, U. Maryland, College Park; private communication (1973).

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
[CrossRef]

Byer, R. L.

Cooney, J. A.

J. A. Cooney, J. Appl. Met. 10, 301 (1971).
[CrossRef]

J. A. Cooney, J. Appl. Met. 9, 182 (1970).
[CrossRef]

Derr, V. E.

Ellingson, R.

R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

Garbuny, M.

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

Gentry, B.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).

Giver, L. P.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).

Gordley, L.

Goto, K.

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

Grant, W. B.

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Higuchi, Y.

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

Hoell, J. M.

J. M. Hoell, W. R. Wade, R. T. Thompson, “Remote Sensing of Atmospheric SO2 Using the Differential Absorption Lidar Technique,” in Proceedings of International Conference on Environmental Sensing and Assessment, 14–19 September 1975, Las Vegas (IEEE, New York, 1976).

Igarashi, T.

K. Asai, T. Igarashi, Opt. Quantum Electron. 7, 211 (1975).
[CrossRef]

Kimura, H.

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Little, C. G.

Mason, J. B.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

McIlrath, T.

R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).

Measures, R. M.

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Melfi, S. H.

S. H. Melfi, Appl. Opt. 11, 1605 (1972).
[CrossRef] [PubMed]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Mills, F. S.

F. S. Mills, R. N. Blais, A Theoretical/Experimental Program to Develop Active Optical Pollution Sensors, Final Report by Old Dominion U. on NASA LaRC research grant 1060 (1977).
[PubMed]

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Pilon, G.

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Remsberg, E. E.

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
[CrossRef]

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceeding of the Third Symposium on Remote Sensing of Environment, October 1964 (U. Michigan, Ann Arbor, 1965).

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, 12–14 April 1966 (U. Michigan, Ann Arbor, 1966), pp. 273–283.

R. M. Schotland, U. Arizona; private communication, 14June1977.

Schwemmer, G.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).

R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

Thompson, R. T.

R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627 (Aug.1976).

J. M. Hoell, W. R. Wade, R. T. Thompson, “Remote Sensing of Atmospheric SO2 Using the Differential Absorption Lidar Technique,” in Proceedings of International Conference on Environmental Sensing and Assessment, 14–19 September 1975, Las Vegas (IEEE, New York, 1976).

Tsuji, T.

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

VanderLaan, J. E.

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

Wade, W. R.

J. M. Hoell, W. R. Wade, R. T. Thompson, “Remote Sensing of Atmospheric SO2 Using the Differential Absorption Lidar Technique,” in Proceedings of International Conference on Environmental Sensing and Assessment, 14–19 September 1975, Las Vegas (IEEE, New York, 1976).

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
[CrossRef]

Wang, C. P.

C. P. Wang, “Application of Lasers in Atmospheric Probing,” in Acta Astronautica Vol. 1 (Pergamon, London, 1974).
[CrossRef]

Wilkerson, T. D.

T. D. Wilkerson, J. Brasseur, “Proposed H2O Line List for Measurements of Strength and Width: λλ 7147–7321,” U. Maryland Technical Note BN-846 (Nov.1976).

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).

R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).

Appl. Opt.

Appl. Phys.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974).
[CrossRef]

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).
[CrossRef]

Appl. Phys. Lett.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

E. R. Murray, R. D. Hake, J. E. VanderLaan, J. G. Hawley, Appl. Phys. Lett. 28, 542 (1976).
[CrossRef]

Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627

R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627 (Aug.1976).

J. Appl. Met.

J. A. Cooney, J. Appl. Met. 9, 182 (1970).
[CrossRef]

J. A. Cooney, J. Appl. Met. 10, 301 (1971).
[CrossRef]

J. Appl. Meteorol.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Appl. Phys.

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Jpn. J. Appl. Phys.

T. Tsuji, H. Kimura, Y. Higuchi, K. Goto, Jpn. J. Appl. Phys. 15, 1743 (1976).
[CrossRef]

Opt. Quantum Electron.

K. Asai, T. Igarashi, Opt. Quantum Electron. 7, 211 (1975).
[CrossRef]

Optoelectronics

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Other

R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceeding of the Third Symposium on Remote Sensing of Environment, October 1964 (U. Michigan, Ann Arbor, 1965).

R. M. Schotland, U. Arizona; private communication, 14June1977.

J. M. Hoell, W. R. Wade, R. T. Thompson, “Remote Sensing of Atmospheric SO2 Using the Differential Absorption Lidar Technique,” in Proceedings of International Conference on Environmental Sensing and Assessment, 14–19 September 1975, Las Vegas (IEEE, New York, 1976).

R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, 12–14 April 1966 (U. Michigan, Ann Arbor, 1966), pp. 273–283.

R. Ellingson, T. McIlrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, U. Maryland Tech. Note BN-816 (Jan.1976).

C. P. Wang, “Application of Lasers in Atmospheric Probing,” in Acta Astronautica Vol. 1 (Pergamon, London, 1974).
[CrossRef]

F. S. Mills, R. N. Blais, A Theoretical/Experimental Program to Develop Active Optical Pollution Sensors, Final Report by Old Dominion U. on NASA LaRC research grant 1060 (1977).
[PubMed]

T. D. Wilkerson, J. Brasseur, “Proposed H2O Line List for Measurements of Strength and Width: λλ 7147–7321,” U. Maryland Technical Note BN-846 (Nov.1976).

J. W. Brault, Kitt Peak National Observatory, Tucson, Ariz., W. S. Benedict, U. Maryland, College Park; private communication (1973).

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, Intensities and N2 Collision Broadening Coefficients Measured for Selected H2O Absorption Lines Between 715 nm and 732 nm, to be published in J. Quant. Spectrosc. Radiat. Transfer. in press (1979).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere, AFCRL-72-0497 (Aug.1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Layout of H2O DIAL ruby-pumped dye laser system.

Fig. 2
Fig. 2

H2O DIAL laser transmitter.

Fig. 3
Fig. 3

DIAL receiver system.

Fig. 4
Fig. 4

Schematic of receiver detector package.

Fig. 5
Fig. 5

H2O absorption spectrum obtained with 300-m absorption cell and ruby-pumped dye laser.

Fig. 6
Fig. 6

Vertical H2O DIAL measurement (—) on night of 22 September 1976 with 100-m range cell, 5.2 × 10−23-cm2 H2O absorption cross section, and 100 laser firings. Shown for comparison are rawinsonde data obtained before (– – –) and after (— —) the DIAL measurements.

Fig. 7
Fig. 7

Vertical H2O DIAL measurements on night of 31 March 1977 with 180-m range cell, 5.9 × 10−23-cm2 H2O absorption cross section, and 100 laser firings. First and second DIAL measurements are indicated by ● and ○, respectively. Data from a rawinsonde (- - -) are shown for comparison.

Fig. 8
Fig. 8

Simulations of vertical H2O DIAL measurements at night with 100-m range cell, 100 laser firings, and 1% system error. H2O absorption cross sections (10−23cm 2) for each curve are 0.5 (—), 1.5 (- - -), 3.0 (– - –), 4.5 (– –), and 6.0 (– - - –). Minimum uncertainty for this measurement is given by envelope of these curves (⋯).

Fig. 9
Fig. 9

Simulations of vertical H2O DIAL measurements at night with 100 laser firings and 1.5 × 10−23-cm2 H2O absorption cross section. Calculations were made for 100-m range cell and 3% system error (- - -); 100-m range cell and 1% system error (); and 200-m range cell and 1% system error (– - –).

Fig. 10
Fig. 10

Simulations of horizontal H2O, DIAL measurements at night with 100-m range cell, 100 laser firings, and 1% system error. H2O absorption cross sections (10−23 cm2) for each curve are 0.5 (—), 1.5 (- - -), 3.0 (– - –), 4.5 (– –), and 6.0 (– - - –). Minimum uncertainty for this measurement is given by envelope of these curves (⋯).

Tables (2)

Tables Icon

Table I Water Vapor Absorption Line Parametersa

Tables Icon

Table II Water Vapor DIAL Simulation Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = 1 ( 2 R 2 - R 1 ) ( σ on - σ off ) ln [ P off ( R 2 ) P on ( R 1 ) P on ( R 2 ) P off ( R 1 ) ] ,

Metrics