Abstract

The aerosol extinction in various weather situations is calculated from Mie theory by use of an aerosol model which starts from dry particles. The particle size distribution and refractive index are adapted to actual air humidity by use of a growth factor, r/ro, which is derived according to the theory of the relationship between relative humidity and the equilibrium radius of an aqueous solution droplet. It is shown that the particle number concentration in different size ranges has a dominating influence on the relation between the IR aerosol transmission and the meteorological visibility. Variations in air humidity affect the aerosol extinction mainly through modification of the particle size distribution. The effect on extinction due to the humidity influence on refractive index is proved to be of less importance.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. A. Selby, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Computer Code Lowtran 3B, AFCRL-TR-75-0255, 109 pp., Air Force Geophysics Laboratory, Mass. 01731 (1975).
  2. J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).
  3. K. T. Whitby, Modeling of Atmospheric Aerosol Particle Size Distribution, Prog. Rep. 253, Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, Minneapolis (1975).
  4. A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
    [CrossRef]
  5. C. N. Davies, Aerosol Sci. 5, 293 (1974).
    [CrossRef]
  6. W. Heller, Phys. Rev. 68, 5 (1945).
    [CrossRef]
  7. W. Heller, J. Phys. Chem. 69, 1123 (1965).
    [CrossRef]
  8. G. Hänel, Tellus 20, 371 (1968).
    [CrossRef]
  9. L. J. Battan, B. M. Herman, J. Geophys. Res. 67, 5139 (1962).
    [CrossRef]
  10. K. L. S. Gunn, T. W. R. East, Q. J. R. Meteorol. Soc. 80, 522 (1954).
    [CrossRef]
  11. R. W. Ditchburn, Light (Interscience, New York, 1958), p. 458.
  12. C. Junge, Ann. Meteorol. Beiheft 1–55 (1952).
  13. P. Winkler, C. Junge, J. Rech. Atmos. (Mémorial Henri Dessens)617 (1972).
  14. C. Brosset, Ambio 5, 157 (1976).
  15. P. Winkler, Meteorol Rundsch. 27, 129 (1974).
  16. G. Musold, G. Lövblad, C. Brosset, The Chemical State of Different Particle Populations, IVL Rep. B 268, Swedish Water and Air Pollution Research Laboratory, Gothenburg, Sweden (1976).
  17. F. E. Volz, J. Geophys. Res. 77, 1017 (1972).
    [CrossRef]
  18. F. E. Voltz, Appl. Opt. 11, 755 (1972).
    [CrossRef]
  19. F. E. Volz, Appl. Opt. 12, 564 (1973).
    [CrossRef] [PubMed]
  20. R. A. McClatchey, J. E. A. Selby, Atmospheric Attenuation of Radiation from 0.76 to 31.25 μm AFCRL-TR-74-0003, 176 pp., Air Force Geophysics Laboratory, Mass. 01731 (1974).
  21. P. J. Foster, C. R. Howarth, Carbon 6, 719 (1968).
    [CrossRef]
  22. W. H. Dalzell, A. F. Sarofim, J. Heat Transfer 100 (1969).
  23. G. M. Hale, M. R. Querry, Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  24. V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).
  25. K. Fischer, Tellus 28, 266 (1976).
    [CrossRef]
  26. H. Dessens, Q. J. R. Meteorol. Soc. 75, 23 (1949).
    [CrossRef]
  27. P. Winkler, Ann Meteorol. 4, 134 (1969).
  28. A. Mészáros, Tellus 23, 436 (1971).
    [CrossRef]
  29. D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
    [CrossRef] [PubMed]
  30. H. Köhler, Zur Thermodynamik der Kondensation an Hygroskopischen Kernen und Bemerkungen über das Zusammanfliessen der Tropfen, Meddelande from Statens Meteorologiska-Hydrologiska Anstalt, Band 3, No. 8, Stockholm (1926).
  31. N. H. Fletcher, The Physics of Rainclouds (Cambridge U. P., London, 1962).
  32. C. Junge, E. McLaren, J. Atmos. Sci. 28, 282 (1971).
    [CrossRef]
  33. J. W. Fitzgerald, J. Appl. Meteorol. 14, 1044 (1975).
    [CrossRef]
  34. C. Junge, G. Scheich, Meteorol. Rundsch. 20, 165 (1967).
  35. A. E. J. Eggleton, Atmos. Environ. 3, 355 (1969).
    [CrossRef] [PubMed]
  36. R. D. H. Low, J. Rech. Atmos. 4, 65 (1969).
  37. G. Hänel, Aerosol Sci. 3, 377 (1972).
    [CrossRef]
  38. P. Winkler, Aerosol Sci. 4, 373 (1973).
    [CrossRef]
  39. G. Hänel, Adv. Geophys. 19, 73 (1976).
    [CrossRef]
  40. E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Conf. Proc. 183, Optical Propagation in the Atmosphere, Electromagnetic Wave Propagation Panel Symposium, Lyngby, Denmark, Available from National Technical Information Service, Springfield, Va. (1975).
  41. F. Kasten, Beitr. Phys. Atmos. 41, 33 (1968).
  42. J. D. Lindberg, Opt. Quantum Electron. 7, 131 (1975).
    [CrossRef]
  43. R. W. Bergstrom, Beitr. Phys. Atmos. 46, 198 (1973).
  44. S. P. Chromow, Einführung in die synoptische Wetteranalyse (Verlag von Julius Springer, Wien1940), pp. 224–227.

1978

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

1976

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).

C. Brosset, Ambio 5, 157 (1976).

K. Fischer, Tellus 28, 266 (1976).
[CrossRef]

G. Hänel, Adv. Geophys. 19, 73 (1976).
[CrossRef]

1975

J. W. Fitzgerald, J. Appl. Meteorol. 14, 1044 (1975).
[CrossRef]

J. D. Lindberg, Opt. Quantum Electron. 7, 131 (1975).
[CrossRef]

1974

D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
[CrossRef] [PubMed]

P. Winkler, Meteorol Rundsch. 27, 129 (1974).

C. N. Davies, Aerosol Sci. 5, 293 (1974).
[CrossRef]

1973

F. E. Volz, Appl. Opt. 12, 564 (1973).
[CrossRef] [PubMed]

G. M. Hale, M. R. Querry, Appl. Opt. 12, 555 (1973).
[CrossRef] [PubMed]

V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).

P. Winkler, Aerosol Sci. 4, 373 (1973).
[CrossRef]

R. W. Bergstrom, Beitr. Phys. Atmos. 46, 198 (1973).

1972

G. Hänel, Aerosol Sci. 3, 377 (1972).
[CrossRef]

P. Winkler, C. Junge, J. Rech. Atmos. (Mémorial Henri Dessens)617 (1972).

F. E. Volz, J. Geophys. Res. 77, 1017 (1972).
[CrossRef]

F. E. Voltz, Appl. Opt. 11, 755 (1972).
[CrossRef]

1971

C. Junge, E. McLaren, J. Atmos. Sci. 28, 282 (1971).
[CrossRef]

A. Mészáros, Tellus 23, 436 (1971).
[CrossRef]

1969

P. Winkler, Ann Meteorol. 4, 134 (1969).

A. E. J. Eggleton, Atmos. Environ. 3, 355 (1969).
[CrossRef] [PubMed]

R. D. H. Low, J. Rech. Atmos. 4, 65 (1969).

W. H. Dalzell, A. F. Sarofim, J. Heat Transfer 100 (1969).

1968

P. J. Foster, C. R. Howarth, Carbon 6, 719 (1968).
[CrossRef]

G. Hänel, Tellus 20, 371 (1968).
[CrossRef]

F. Kasten, Beitr. Phys. Atmos. 41, 33 (1968).

1967

C. Junge, G. Scheich, Meteorol. Rundsch. 20, 165 (1967).

1965

W. Heller, J. Phys. Chem. 69, 1123 (1965).
[CrossRef]

1962

L. J. Battan, B. M. Herman, J. Geophys. Res. 67, 5139 (1962).
[CrossRef]

1954

K. L. S. Gunn, T. W. R. East, Q. J. R. Meteorol. Soc. 80, 522 (1954).
[CrossRef]

1952

C. Junge, Ann. Meteorol. Beiheft 1–55 (1952).

1949

H. Dessens, Q. J. R. Meteorol. Soc. 75, 23 (1949).
[CrossRef]

1945

W. Heller, Phys. Rev. 68, 5 (1945).
[CrossRef]

Battan, L. J.

L. J. Battan, B. M. Herman, J. Geophys. Res. 67, 5139 (1962).
[CrossRef]

Bergstrom, R. W.

R. W. Bergstrom, Beitr. Phys. Atmos. 46, 198 (1973).

Brosset, C.

C. Brosset, Ambio 5, 157 (1976).

G. Musold, G. Lövblad, C. Brosset, The Chemical State of Different Particle Populations, IVL Rep. B 268, Swedish Water and Air Pollution Research Laboratory, Gothenburg, Sweden (1976).

Chromow, S. P.

S. P. Chromow, Einführung in die synoptische Wetteranalyse (Verlag von Julius Springer, Wien1940), pp. 224–227.

Countess, R. J.

D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
[CrossRef] [PubMed]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, J. Heat Transfer 100 (1969).

Davies, C. N.

C. N. Davies, Aerosol Sci. 5, 293 (1974).
[CrossRef]

Dessens, H.

H. Dessens, Q. J. R. Meteorol. Soc. 75, 23 (1949).
[CrossRef]

Ditchburn, R. W.

R. W. Ditchburn, Light (Interscience, New York, 1958), p. 458.

East, T. W. R.

K. L. S. Gunn, T. W. R. East, Q. J. R. Meteorol. Soc. 80, 522 (1954).
[CrossRef]

Eggleton, A. E. J.

A. E. J. Eggleton, Atmos. Environ. 3, 355 (1969).
[CrossRef] [PubMed]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Conf. Proc. 183, Optical Propagation in the Atmosphere, Electromagnetic Wave Propagation Panel Symposium, Lyngby, Denmark, Available from National Technical Information Service, Springfield, Va. (1975).

Fischer, K.

K. Fischer, Tellus 28, 266 (1976).
[CrossRef]

Fitzgerald, J. W.

J. W. Fitzgerald, J. Appl. Meteorol. 14, 1044 (1975).
[CrossRef]

Fletcher, N. H.

N. H. Fletcher, The Physics of Rainclouds (Cambridge U. P., London, 1962).

Foster, P. J.

P. J. Foster, C. R. Howarth, Carbon 6, 719 (1968).
[CrossRef]

Gunn, K. L. S.

K. L. S. Gunn, T. W. R. East, Q. J. R. Meteorol. Soc. 80, 522 (1954).
[CrossRef]

Hågård, A.

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Hale, G. M.

Hänel, G.

G. Hänel, Adv. Geophys. 19, 73 (1976).
[CrossRef]

G. Hänel, Aerosol Sci. 3, 377 (1972).
[CrossRef]

G. Hänel, Tellus 20, 371 (1968).
[CrossRef]

Heller, W.

W. Heller, J. Phys. Chem. 69, 1123 (1965).
[CrossRef]

W. Heller, Phys. Rev. 68, 5 (1945).
[CrossRef]

Herman, B. M.

L. J. Battan, B. M. Herman, J. Geophys. Res. 67, 5139 (1962).
[CrossRef]

Hoopes, G. S.

D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
[CrossRef] [PubMed]

Howarth, C. R.

P. J. Foster, C. R. Howarth, Carbon 6, 719 (1968).
[CrossRef]

Ivlev, L. S.

V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).

Junge, C.

P. Winkler, C. Junge, J. Rech. Atmos. (Mémorial Henri Dessens)617 (1972).

C. Junge, E. McLaren, J. Atmos. Sci. 28, 282 (1971).
[CrossRef]

C. Junge, G. Scheich, Meteorol. Rundsch. 20, 165 (1967).

C. Junge, Ann. Meteorol. Beiheft 1–55 (1952).

Kasten, F.

F. Kasten, Beitr. Phys. Atmos. 41, 33 (1968).

Köhler, H.

H. Köhler, Zur Thermodynamik der Kondensation an Hygroskopischen Kernen und Bemerkungen über das Zusammanfliessen der Tropfen, Meddelande from Statens Meteorologiska-Hydrologiska Anstalt, Band 3, No. 8, Stockholm (1926).

Kondratyev, K. Ya.

V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).

Lindberg, J. D.

J. D. Lindberg, Opt. Quantum Electron. 7, 131 (1975).
[CrossRef]

Lövblad, G.

G. Musold, G. Lövblad, C. Brosset, The Chemical State of Different Particle Populations, IVL Rep. B 268, Swedish Water and Air Pollution Research Laboratory, Gothenburg, Sweden (1976).

Low, R. D. H.

R. D. H. Low, J. Rech. Atmos. 4, 65 (1969).

McClatchey, R. A.

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).

J. E. A. Selby, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Computer Code Lowtran 3B, AFCRL-TR-75-0255, 109 pp., Air Force Geophysics Laboratory, Mass. 01731 (1975).

R. A. McClatchey, J. E. A. Selby, Atmospheric Attenuation of Radiation from 0.76 to 31.25 μm AFCRL-TR-74-0003, 176 pp., Air Force Geophysics Laboratory, Mass. 01731 (1974).

McLaren, E.

C. Junge, E. McLaren, J. Atmos. Sci. 28, 282 (1971).
[CrossRef]

Mészáros, A.

A. Mészáros, Tellus 23, 436 (1971).
[CrossRef]

Musold, G.

G. Musold, G. Lövblad, C. Brosset, The Chemical State of Different Particle Populations, IVL Rep. B 268, Swedish Water and Air Pollution Research Laboratory, Gothenburg, Sweden (1976).

Nilsson, B.

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Ottersten, H.

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Querry, M. R.

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, J. Heat Transfer 100 (1969).

Scheich, G.

C. Junge, G. Scheich, Meteorol. Rundsch. 20, 165 (1967).

Selby, J. E. A.

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).

J. E. A. Selby, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Computer Code Lowtran 3B, AFCRL-TR-75-0255, 109 pp., Air Force Geophysics Laboratory, Mass. 01731 (1975).

R. A. McClatchey, J. E. A. Selby, Atmospheric Attenuation of Radiation from 0.76 to 31.25 μm AFCRL-TR-74-0003, 176 pp., Air Force Geophysics Laboratory, Mass. 01731 (1974).

Shettle, E. P.

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Conf. Proc. 183, Optical Propagation in the Atmosphere, Electromagnetic Wave Propagation Panel Symposium, Lyngby, Denmark, Available from National Technical Information Service, Springfield, Va. (1975).

Sinclair, D.

D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
[CrossRef] [PubMed]

Steinvall, O.

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Voltz, F. E.

Volz, F. E.

F. E. Volz, Appl. Opt. 12, 564 (1973).
[CrossRef] [PubMed]

F. E. Volz, J. Geophys. Res. 77, 1017 (1972).
[CrossRef]

Whitby, K. T.

K. T. Whitby, Modeling of Atmospheric Aerosol Particle Size Distribution, Prog. Rep. 253, Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, Minneapolis (1975).

Winkler, P.

P. Winkler, Meteorol Rundsch. 27, 129 (1974).

P. Winkler, Aerosol Sci. 4, 373 (1973).
[CrossRef]

P. Winkler, C. Junge, J. Rech. Atmos. (Mémorial Henri Dessens)617 (1972).

P. Winkler, Ann Meteorol. 4, 134 (1969).

Zuyev, V.Ye.

V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).

Adv. Geophys.

G. Hänel, Adv. Geophys. 19, 73 (1976).
[CrossRef]

Aerosol Sci.

G. Hänel, Aerosol Sci. 3, 377 (1972).
[CrossRef]

P. Winkler, Aerosol Sci. 4, 373 (1973).
[CrossRef]

C. N. Davies, Aerosol Sci. 5, 293 (1974).
[CrossRef]

Ambio

C. Brosset, Ambio 5, 157 (1976).

Ann Meteorol.

P. Winkler, Ann Meteorol. 4, 134 (1969).

Ann. Meteorol. Beiheft 1–55

C. Junge, Ann. Meteorol. Beiheft 1–55 (1952).

Appl. Opt.

Atmos. Environ.

D. Sinclair, R. J. Countess, G. S. Hoopes, Atmos. Environ. 8, 1111 (1974).
[CrossRef] [PubMed]

A. E. J. Eggleton, Atmos. Environ. 3, 355 (1969).
[CrossRef] [PubMed]

Atmospheric Transmittance from 0.25 to 28.5 µm, Supplement Lowtran 3B

J. E. A. Selby, E. P. Shettle, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Supplement Lowtran 3B (1976),AFCRL-TR-76-0258, Air Force Geophysics Laboratory, Mass. 01731 (1976).

Beitr. Phys. Atmos.

F. Kasten, Beitr. Phys. Atmos. 41, 33 (1968).

R. W. Bergstrom, Beitr. Phys. Atmos. 46, 198 (1973).

Carbon

P. J. Foster, C. R. Howarth, Carbon 6, 719 (1968).
[CrossRef]

Izv. Acad. Sci. USSR, Atmos. Oceanic Phys.

V.Ye. Zuyev, L. S. Ivlev, K. Ya. Kondratyev, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 9(7), 439 (1973).

J. Appl. Meteorol.

J. W. Fitzgerald, J. Appl. Meteorol. 14, 1044 (1975).
[CrossRef]

J. Atmos. Sci.

C. Junge, E. McLaren, J. Atmos. Sci. 28, 282 (1971).
[CrossRef]

J. Geophys. Res.

F. E. Volz, J. Geophys. Res. 77, 1017 (1972).
[CrossRef]

L. J. Battan, B. M. Herman, J. Geophys. Res. 67, 5139 (1962).
[CrossRef]

J. Heat Transfer

W. H. Dalzell, A. F. Sarofim, J. Heat Transfer 100 (1969).

J. Phys. Chem.

W. Heller, J. Phys. Chem. 69, 1123 (1965).
[CrossRef]

J. Rech. Atmos.

R. D. H. Low, J. Rech. Atmos. 4, 65 (1969).

J. Rech. Atmos. (Mémorial Henri Dessens)

P. Winkler, C. Junge, J. Rech. Atmos. (Mémorial Henri Dessens)617 (1972).

Meteorol Rundsch.

P. Winkler, Meteorol Rundsch. 27, 129 (1974).

Meteorol. Rundsch.

C. Junge, G. Scheich, Meteorol. Rundsch. 20, 165 (1967).

Opt. Quantum Electron.

J. D. Lindberg, Opt. Quantum Electron. 7, 131 (1975).
[CrossRef]

Phys. Rev.

W. Heller, Phys. Rev. 68, 5 (1945).
[CrossRef]

Q. J. R. Meteorol. Soc.

K. L. S. Gunn, T. W. R. East, Q. J. R. Meteorol. Soc. 80, 522 (1954).
[CrossRef]

H. Dessens, Q. J. R. Meteorol. Soc. 75, 23 (1949).
[CrossRef]

Radio Sci.

A. Hågård, B. Nilsson, H. Ottersten, O. Steinvall, Radio Sci. 13, 277 (1978).
[CrossRef]

Tellus

G. Hänel, Tellus 20, 371 (1968).
[CrossRef]

K. Fischer, Tellus 28, 266 (1976).
[CrossRef]

A. Mészáros, Tellus 23, 436 (1971).
[CrossRef]

Other

H. Köhler, Zur Thermodynamik der Kondensation an Hygroskopischen Kernen und Bemerkungen über das Zusammanfliessen der Tropfen, Meddelande from Statens Meteorologiska-Hydrologiska Anstalt, Band 3, No. 8, Stockholm (1926).

N. H. Fletcher, The Physics of Rainclouds (Cambridge U. P., London, 1962).

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Conf. Proc. 183, Optical Propagation in the Atmosphere, Electromagnetic Wave Propagation Panel Symposium, Lyngby, Denmark, Available from National Technical Information Service, Springfield, Va. (1975).

G. Musold, G. Lövblad, C. Brosset, The Chemical State of Different Particle Populations, IVL Rep. B 268, Swedish Water and Air Pollution Research Laboratory, Gothenburg, Sweden (1976).

R. W. Ditchburn, Light (Interscience, New York, 1958), p. 458.

J. E. A. Selby, R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 μm, Computer Code Lowtran 3B, AFCRL-TR-75-0255, 109 pp., Air Force Geophysics Laboratory, Mass. 01731 (1975).

K. T. Whitby, Modeling of Atmospheric Aerosol Particle Size Distribution, Prog. Rep. 253, Particle Technology Laboratory, Mechanical Engineering Department, University of Minnesota, Minneapolis (1975).

S. P. Chromow, Einführung in die synoptische Wetteranalyse (Verlag von Julius Springer, Wien1940), pp. 224–227.

R. A. McClatchey, J. E. A. Selby, Atmospheric Attenuation of Radiation from 0.76 to 31.25 μm AFCRL-TR-74-0003, 176 pp., Air Force Geophysics Laboratory, Mass. 01731 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

The total (ET) and partial aerosol extinction coefficients as a function of wavelength for the nuclei (N), accumulation (A), and coarse particle (C) modes at 99.8% and 80% RH. Aerosol size distribution according to Table VIII.

Fig. 2
Fig. 2

The real and imaginary parts of refractive index for aerosol particles as a function of wavelength at different relative humidities. The dry particles are composed of 80% water soluble and 20% water insoluble material.

Fig. 3
Fig. 3

The aerosol extinction coefficient at the wavelengths 0.55 μm, 3.75 μm, and 10.7 μm for different dry particle median radii rmo in the accumulation and coarse particle modes of an average aerosol according to Table VIII. RH = 90%.

Fig. 4
Fig. 4

The aerosol extinction coefficient at the wavelengths 0.55 μm, 3.75 μm, and 10.7 μm for different geometrical standard deviations for lnr, lnSG, in the accumulation and coarse particle modes of an average aerosol according to Table VIII. RH = 90%.

Fig. 5
Fig. 5

The aerosol extinction coefficient at the wavelengths 0.55 μm, 3.75 μm, and 10.7 μm at different relative humidities for an average aerosol according to Table VIII.

Fig. 6
Fig. 6

The aerosol extinction coefficient at the wavelengths 0.55 μm, 3.75 μm, and 10.7 μm for 80%, 95%, and 99% RH calculated in three different ways: (1) 0.5 × (80/20) + 0.5 × (0/100) —; (2) 0.4 × (100/0) + 0.6 × (0/100) ·····; (3) 1.0 × (40/60) - - -; (%water soluble matter/% water insoluble matter).

Fig. 7
Fig. 7

The aerosol extinction coefficient as a function of wavelength at different relative humidities for an average aerosol according to Table VIII.

Fig. 8
Fig. 8

The total (ET) and partial aerosol extinction coefficients as a function of wavelength for the scattering (Es) and absorption (Ea) fractions at 50% and 99.8% RH. Aerosol size distribution according to Table VIII.

Fig. 9
Fig. 9

The aerosol extinction coefficient as a function of wavelength at the meteorological visibilities (VV) 2 km, 5 km, 15 km, and 50 km for five different air masses with assumed size distributions according to Table IX.

Fig. 10
Fig. 10

Fractions of water soluble (S) and water insoluble (I) aerosol mass15 combined with an average volume size distribution according to Table VIII.

Fig. 11
Fig. 11

Aerosol particle model used in extinction calculations.

Fig. 12
Fig. 12

The van’t Hoff factor (i) as a function of water activity (aw) for some electrolytes.

Fig. 13
Fig. 13

The van’t Hoff factor (i) for an average aerosol as a function of water activity (aw).

Fig. 14
Fig. 14

Dissolved fraction () of water soluble substances in an average aerosol as a function of relative humidity: - - - accumulated mean fractions according to Table I; — smoothed curve used in extinction calculations.

Fig. 15
Fig. 15

The growth factor (r/ro) in continental air masses as a function of relative humidity; 3, 4, and 5 are graphic representations of the corresponding types in Table VII. M is the average growth curve assuming ρo = 2.9 g cm−3 for samples collected at Mainz.13 MC is a calculated growth curve assuming E = 0.4, ρo = 2.9 g cm−3, ρs = 2.0 g cm−3, Ms = 145, and ro = 1.0 μm. ⊙ represents measured value in summer situations, ro = 0.5 μm.28 ◬ represents value measured by Sinclair et al.29

Fig. 16
Fig. 16

Equilibrium radius (r) of aerosol particles as a function of dry particle radius (ro) at different relative humidities (RH) calculated for particles composed of 80% water soluble and 20% water insoluble material.

Fig. 17
Fig. 17

Particle number size distribution according to Table VIII (—) combined with the equivalent particle cross section size distribution (- - -).

Fig. 18
Fig. 18

The growth factor (r/ro) in maritime air masses as a function of relative humidity, 3, 8, 9, and NaCl are graphic representations of the corresponding types in Table VII. H1 is the growth curve (assuming ρo = 2.4 g cm−3) for samples of small particles (0. 1 < r < 1.0 μm) at Helgoland. H2 is the growth curve (ρo = 2.4) for samples of large particles (r > 1.0 μm) at Helgoland. M represents the growth curve (assuming ρo = 2.4 g cm−3) for aerosol samples collected in maritime air masses at Mainz (H1, H2, and M according to Winkler and Junge13).

Fig. 19
Fig. 19

The equilibrium relative humidity as a function of droplet radius for aerosol particles of type 1, 3, and 5 in Table VII. The supersaturation effect is greatly exaggerated by the expanded scale above RH = 100%.

Fig. 20
Fig. 20

Volume fractions of water in aerosol droplets as a function of relative humidity for particles of type 1, 3, 5, and 8 in Table VII.

Tables (9)

Tables Icon

Table I Critical Relative Humidities (RH*) and Assumed Mass Fractions for Some Electrolytes, which are Primarily Composed of Ions Observed in Aerosols

Tables Icon

Table II Mass Fractions of Characteristic Aerosol Types and Actual Parameter Values Used for Calculations of the Growth Factor

Tables Icon

Table III Complex Refractive Indices (n = n′ − ik) for Characteristic Components of Aerosol Particles

Tables Icon

Table IV Concentration of Certain ions in the Water Soluble Fraction of Aerosol Particles

Tables Icon

Table V The van’t Hoff Factor i and the Dissolved Fraction of the Water Soluble Components at Different Relative Humidities

Tables Icon

Table VI NaCl as a Function of Relative Humidity

Tables Icon

Table VII Calculated Values of the Growth Factor r/ro at temp + 15°C for Different Aerosol Compositions at Representative Sizes of Dry Particles

Tables Icon

Table VIII Mean Values of the Parameters in a Tri-modal Size Distribution According to Measurements by Whitby3

Tables Icon

Table IX Assumed and Calculated Size Distribution Parameters in Different Air Masses and Equivalent Relative Humidities for Which Visibility Equals 2 km, 5 km, 15 km, and 50 km

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d N d log r = 2.3 2 π N T ln SG exp [ - 1 2 ( ln r / r m ln SG ) 2 ] ,
n o = ( n 1 δ 1 ρ 1 + n 2 δ 2 ρ 2 + n x δ x ρ x ) × ( δ 1 ρ 1 + δ 2 ρ 2 + δ x ρ x ) - 1 ,
n f = n o ( r / r o ) f - 3 + n w [ 1 - ( r / r o ) f - 3 ] ,
S = e ( r ) e ( ) = exp ( 2 σ M r ρ R v T ) × ( 1 + i M w M s m s m w ) - 1 ,
S = exp ( 2 [ σ w ( T ) + b E ρ o ( r / r o ) 3 - 1 ] { M s M w [ ( r / r o ) 3 - 1 + E ρ o ] M s [ ( r / r o ) 3 - 1 ] + M w E ρ o } r o ( r / r o ) [ ( r / r o ) 3 - 1 + E ρ o ] ρ s [ ( r / r o ) 3 - 1 ] ρ s + E ρ o R v T ) × [ 1 + i M w M s E ρ o ( r / r o ) 3 - 1 ] - 1 .
i ¯ = ( i j m s j m s ) ,
m o = [ ( 4 π ) / 3 ] r o 3 ρ o ,
m d s = E m o = [ ( 4 π ) / 3 ] E r o 3 ρ o .
m s = m d s = [ ( 4 π ) / 3 ] E r o 3 ρ o .
m w = [ ( 4 π ) / 3 ] ( r 3 - r o 3 ) ρ w ,
ρ = m s + m w m s / ρ s + m w / ρ w = [ r 3 + ( E ρ o - 1 ) r o 3 ] ρ s r 2 ρ s + r o 3 ( E ρ o - ρ s ) .
M = m s + m w m s / M s + m w / M w = M s M w [ r 3 + ( E ρ 0 - 1 ) r o 3 ] M s r 3 + ( M 2 E ρ o - M s ) r o 3 .
σ = σ w ( T ) + b ( m s / m w ) ,

Metrics