Abstract

An automatic frequency-doubling system has been constructed using a lithium formate monohydrate crystal as the frequency doubler in a stationary optical arrangement. Without any readjustment of the crystal orientation, smooth tuning of the uv light over the 240–350-nm range has been obtained. The feasibility of this system for uv absorption measurements has been successfully demonstrated using SO2 gas.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Saikan, Opt. Commun. 18, 439 (1976).
    [CrossRef]
  2. S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).
  4. Schott Catalog “Optisches Glas,” Jenaer Glaswerk Schott & Gen., Mainz.
  5. I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
    [CrossRef]
  6. F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
    [CrossRef]
  7. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3 (Van Nostrand Reinhold, New York, 1966).
  8. J. H. Clements, Phys. Rev. 47, 224 (1935); R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
    [CrossRef]

1977 (1)

I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

1976 (1)

S. Saikan, Opt. Commun. 18, 439 (1976).
[CrossRef]

1973 (1)

F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
[CrossRef]

1970 (1)

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

1935 (1)

J. H. Clements, Phys. Rev. 47, 224 (1935); R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Bonner, W. A.

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

Clements, J. H.

J. H. Clements, Phys. Rev. 47, 224 (1935); R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Danon, N. N.

I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Dunning, F. B.

F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3 (Van Nostrand Reinhold, New York, 1966).

Oppenheim, U. P.

I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Potopowicz, J. R.

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

Saikan, S.

S. Saikan, Opt. Commun. 18, 439 (1976).
[CrossRef]

Shoshan, I.

I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Singh, S.

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

Stebbings, R. F.

F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
[CrossRef]

Tittel, F. K.

F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
[CrossRef]

Van Uitert, L. G.

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

Appl. Phys. Lett. (1)

S. Singh, W. A. Bonner, J. R. Potopowicz, L. G. Van Uitert, Appl. Phys. Lett. 17, 292 (1970).
[CrossRef]

J. Appl. Phys. (1)

I. Shoshan, N. N. Danon, U. P. Oppenheim, J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Opt. Commun. (2)

F. B. Dunning, F. K. Tittel, R. F. Stebbings, Opt. Commun. 7, 181 (1973).
[CrossRef]

S. Saikan, Opt. Commun. 18, 439 (1976).
[CrossRef]

Phys. Rev. (1)

J. H. Clements, Phys. Rev. 47, 224 (1935); R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Other (3)

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3 (Van Nostrand Reinhold, New York, 1966).

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1965).

Schott Catalog “Optisches Glas,” Jenaer Glaswerk Schott & Gen., Mainz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Automatic frequency doubling system. Dimensions of prism P1: 10 mm × 15 mm; P2: 50 × 80; and P3,P4: 25 × 40. All four prisms have the same shape with 10-mm thickness and apex angle 60°. The Fresnel rhomb prisms have an aperture of 20 × 20 mm2 and a total reflection angle of 55.1°.

Fig. 2
Fig. 2

Tuning characteristics of second harmonic output. The second harmonic intensity is normalized to the maximum intensity of each dye. The dyes used are as follows: (1) coumarin 152; (2) coumarin 307; (3) coumarin 152; (4) coumarin 153; (5) rhodamine-6G; (6) rhodamine-B; (7) a mixture of R-B and Cresil Violet perchlorate; (8) a mixture of R-6G and Cresil Violet perchlorate; (9) a mixture of R-B and Nileblue-A perchlorate; (10) Na-Fluorescein; (11) DODC-iodide. Ethanol is used as a solvent, except for dye 1 and dye 11, which are dissolved in dioxane and DMSO, respectively.

Fig. 3
Fig. 3

Second harmonic generation using a broadband laser: (a) SHG spectrum when the laser is tuned stepwise; (b) SHG spectrum of the broadband laser; (c) spectrum of fundamental—the dye used here was coumarin 153. The calibration lines are from a Hg lamp; (a) and (b) are photographed using a spectrometer in second order.

Fig. 4
Fig. 4

Absorption spectrum of SO2. Sample cell length 20 cm and 2-Torr pressure. Four different dyes were used to cover the range shown.

Fig. 5
Fig. 5

Absorption spectrum of SO2. The scanning speed of the rhodamine-B dye laser was reduced to 0.1 Å/sec.

Tables (1)

Tables Icon

Table I Comparison Between the External Phase-Matching Angle θ m ex and the Incident Angle θ to the Crystal in Fig. 1

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P z 2 ω = d 31 E x 2 + d 32 E y 2 + d 33 E z 2 .
s x 2 n - 2 - n x - 2 + s y 2 n - 2 - n y - 2 + s z 2 n - 2 - n z - 2 = 0
n 2 = n y 2 , n - 2 = cos 2 θ n x - 2 + sin 2 θ n z - 2 .
sin 2 θ m i n = ( n y ω ) - 2 - ( n x 2 ω ) - 2 ( n z 2 ω ) - 2 - ( n x 2 ω ) - 2 .
tan θ = y 1 f cos i ( sin i - cos i tan δ ) [ cos α + sin α sin i ( n 2 - sin 2 i ) 1 / 2 ] + y 2 f cos i [ cos α 2 sin i ( n 2 - sin 2 i ) 1 / 2 - sin α 2 ] ,

Metrics