Abstract

Intrinsic performance limits of noncontacting fiber lever displacement measuring systems are quantitatively described. Generalized relationships linking displacement detection limit, frequency response, dynamic range, linearity, and working distance to fiber diameter, illumination irradiance and coupling angle, photo-detector characteristics, and reflection and transmission losses were obtained by analysis and confirmed by measurement. Both procedures showed performance limits to be functions of the square root of the flux density coupled into the target-illuminating fiber(s) by the electroluminescent source. Displacement detection and bandwidth limits achievable with tungsten or LED sources were in the 2 × 10−11 to 2×10-12m/Hz and MHz, range respectively. A basis for optimizing levers for different applications and determination of intrinsic performance limits is provided.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription