Abstract

A new type of analog-to-digital converter (ADC), which consists of an electrooptic light modulator and electronic diode circuits, is proposed. This device allows direct translation of an analog signal into a Gray code with high speed and high resolution. It is demonstrated that an analog signal with a 60-V P–P voltage and a frequency of 11 MHz can be translated into 3 bits in a Gray code by this ADC.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (1972).
    [CrossRef]
  2. B. M. Gordon, IEEE Trans. Circuits Syst. CAS-25, 391 (1978).
    [CrossRef]
  3. S. Wright, Electron Lett. 10, 508 (1974).
    [CrossRef]
  4. P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.
  5. H. F. Taylor, Proc. IEEE 63, 1524 (1975).
    [CrossRef]
  6. H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
    [CrossRef]
  7. G. K. Kastopoulos, Digital Engineering (Wiley-Interscience, New York, 1975), pp. 7–20, 206–210.

1978 (2)

B. M. Gordon, IEEE Trans. Circuits Syst. CAS-25, 391 (1978).
[CrossRef]

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

1975 (1)

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

1974 (1)

S. Wright, Electron Lett. 10, 508 (1974).
[CrossRef]

1972 (1)

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (1972).
[CrossRef]

Bauer, P. W.

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Ferrero, R. A.

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (1972).
[CrossRef]

Gordon, B. M.

B. M. Gordon, IEEE Trans. Circuits Syst. CAS-25, 391 (1978).
[CrossRef]

Kastopoulos, G. K.

G. K. Kastopoulos, Digital Engineering (Wiley-Interscience, New York, 1975), pp. 7–20, 206–210.

Nguyen, Le T.

P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.

Saunier, P.

P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.

Sheingold, D. H.

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (1972).
[CrossRef]

Taylor, H. F.

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

Taylor, M. J.

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Tsai, C. S.

P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.

Wright, S.

S. Wright, Electron Lett. 10, 508 (1974).
[CrossRef]

Yao, I. W.

P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.

Appl. Phys. Lett. (1)

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Electron Lett. (1)

S. Wright, Electron Lett. 10, 508 (1974).
[CrossRef]

IEEE Spectrum (1)

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (1972).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

B. M. Gordon, IEEE Trans. Circuits Syst. CAS-25, 391 (1978).
[CrossRef]

Proc. IEEE (1)

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

Other (2)

G. K. Kastopoulos, Digital Engineering (Wiley-Interscience, New York, 1975), pp. 7–20, 206–210.

P. Saunier, C. S. Tsai, I. W. Yao, Le T. Nguyen, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1978), paper TuC2-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement of a 3-bit hybrid type of ADC containing an EO light modulator and diodes.

Fig. 2
Fig. 2

Signal responses to the applied voltage in each bit for a 4-bit hybrid type of ADC. (a) Optical output vs applied voltage in the EO light modulator for four values of phase retardations, θ = π/2, −π/2, π, and 0, corresponding to I1, I 1 , I2, and I 2 . (b) The signal responses of I1, I 1 , I2, and I 2 vs applied voltage in the output from the diode biased in its forward direction. (c) The composite signal responses vs applied voltage in the sum of two signals shown in (b). (d) The resultant signal response vs applied voltage obtained from two signals in the lower and higher rows shown in (c). J1, J2, J3, and J4 show code patterns for the MSB and the second-, third-, and fourth-order bits in a Gray code, respectively.

Fig. 3
Fig. 3

Oscilloscope traces showing the translation of analog signal into the third-order bit in a Gray code by the hybrid type of ADC. (a) A triangular signal applied to the EO light modulator, in which the peak-to-peak voltage is 60 V and the frequency is 500 kHz. (b) and (c) Detected signals from the EO light modulator. Both signals are out of phase and correspond to I1 and I 1 in Fig. 1 (0.8 V P–P). (d) The composite signals obtained by summing up two signals shown in (b) and (c) after the nonlinear process in the diodes (40 mV P–P). (e) The digital signal from the comparator. It corresponds to the third-order bit in a Gray code (2 V PP).

Fig. 4
Fig. 4

Experimental results for 3-bit A/D conversion by the hybrid device. (a) A sinusoidal signal applied to the EO light modulator, in which the peak-to-peak voltage is 60 V and the frequency is 11 MHz. (b), (c), and (d) Digital signals for the MSB and the second- and third-order bits in a Gray code, respectively (1.5 V P–P).

Fig. 5
Fig. 5

The number of optical signals K and relative phase difference Δθ in succeeding signals required for the hybrid type of ADC with the resolution m. Solid lines with black and white points correspond to K and Δθ, respectively. Dashed line shows the number of optical signals required for Taylor’s device.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = sin 2 ( π V 2 V π + θ 2 ) ,
I 1 = sin 2 ( π V 2 V π + π 4 ) I 1 = sin 2 ( π V 2 V π - π 4 ) I 2 = cos 2 ( π V 2 V π ) } .
- 3 4 V π V - V π 4 ,             V π 4 V 3 4 V π .
- 7 8 V π V - 5 8 V π - 3 8 V π V - V π 8 V π 8 V 3 8 V π 5 8 V π V 7 8 V π }

Metrics