Abstract

A lidar system, incorporating tunable dye lasers and a 25-cm diam Newtonian telescope, has been constructed and applied in atmospheric pollution monitoring. The system, which is fully controlled by a specially designed microcomputer, has been used in several field tests, where stack effluents as well as the ambient air have been monitored. Results from particle, NO2, and SO2 measurements are discussed.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere, Topics in Applied Physics, Vol. 14 (Springer, Berlin, 1976).
    [CrossRef]
  2. R. M. Schotland, in Proceedings of the Third Symposium on Remote Sensing of the Environment (University of Michigan, Ann Arbor, 1964).
  3. K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
    [CrossRef]
  4. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
    [CrossRef]
  5. K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).
  6. E. E. Uthe, W. E. Wilson, in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, 1977 (American Chemical Society, Washington, D.C., 1978).
  7. C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
    [CrossRef]
  8. P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
    [CrossRef]
  9. R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
    [CrossRef]
  10. B. W. Jolliffe, P. T. Woods, private communication.
  11. R. J. Exton, NASA Technical Paper 1014 (U.S. PO, Washington, D.C., 1977).
  12. K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).
  13. K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).
  14. K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).
  15. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).
  16. L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).
  17. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).
  18. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

1979 (1)

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

1978 (1)

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

1975 (1)

R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

1974 (2)

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

1972 (1)

C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
[CrossRef]

Bethke, G. W.

C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
[CrossRef]

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Celander, L.

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).

Conner, W. D.

C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
[CrossRef]

Cook, C. S.

C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
[CrossRef]

Exton, R. J.

R. J. Exton, NASA Technical Paper 1014 (U.S. PO, Washington, D.C., 1977).

Fredriksson, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

Galle, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Hoell, J. M.

R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Jolliffe, B. W.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

B. W. Jolliffe, P. T. Woods, private communication.

Linder, A.

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

Lindgren, I.

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).

K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Nyström, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

Öström, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Schotland, R. M.

R. M. Schotland, in Proceedings of the Third Symposium on Remote Sensing of the Environment (University of Michigan, Ann Arbor, 1964).

Svanberg, S.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).

K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).

K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

Thompson, R. T.

R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Uthe, E. E.

E. E. Uthe, W. E. Wilson, in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, 1977 (American Chemical Society, Washington, D.C., 1978).

Wade, W. R.

R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Weibull, G.

K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).

Wilson, W. E.

E. E. Uthe, W. E. Wilson, in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, 1977 (American Chemical Society, Washington, D.C., 1978).

Woods, P. T.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

B. W. Jolliffe, P. T. Woods, private communication.

Appl. Opt. (1)

C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1752 (1972).
[CrossRef]

Appl. Phys. (1)

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974); W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

J. Appl. Phys. (1)

R. T. Thompson, J. M. Hoell, W. R. Wade, J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Medd. Havsfiskelab. Lysekil No. 245 (1)

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Medd. Havsfiskelab. Lysekil No. 245 (1979).

Opt. Laser Technol. (1)

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

Other (12)

E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere, Topics in Applied Physics, Vol. 14 (Springer, Berlin, 1976).
[CrossRef]

R. M. Schotland, in Proceedings of the Third Symposium on Remote Sensing of the Environment (University of Michigan, Ann Arbor, 1964).

K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, “Laser Radar Measurements of Air Pollutants at an Oil-Burning Power Station,” Goteborg Institute of Physics Report GIPR-150 (1977).

E. E. Uthe, W. E. Wilson, in Proceedings of the Fourth Joint Conference on Sensing of Environmental Pollutants, 1977 (American Chemical Society, Washington, D.C., 1978).

B. W. Jolliffe, P. T. Woods, private communication.

R. J. Exton, NASA Technical Paper 1014 (U.S. PO, Washington, D.C., 1977).

K. Fredriksson, I. Lindgren, S. Svanberg, G. Weibull, “Measurements of the Emission from Industrial Smokestacks Using Laser-Radar Techniques,” Goteborg Institute of Physics Report GIPR-121 (1976).

K. Fredriksson, I. Lindgren, K. Nyström, S. Svanberg, “Field Test of a Lidar System for the Detection of Atmospheric Pollutants,” Goteborg Institute of Physics Report GIPR-134 (1976).

K. Fredriksson, A. Linder, I. Lindgren, K. Nyström, S. Svanberg, “Some Preliminary Measurements of SO2 Concentrations Using a Differential Absorption Lidar System,” Goteborg Institute of Physics Report GIPR-136 (1977).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Measurements of Air Pollutants in the Trollhöttan Area Using Lidar Techniques,” Goteborg Institute of Physics Report GIPR-171 (1978).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, “Investigation of Laser-Induced Fluorescence with Applications to Remote Sensing of Environmental Parameters,” Goteborg Institute of Physics Report GIPR-149 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, “Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection,” Goteborg Institute of Physics Report GIPR-162 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the lidar system.

Fig. 2
Fig. 2

Relative particle distribution downwind an industrial area, obtained in a vertical lidar scan employing a nitrogen laser. An experimental curve illustrating the evaluation procedure is included.

Fig. 3
Fig. 3

Comparison between lidar and in-stack measurements of particle concentrations. The lidar curve features the amplitude of the elastic plume echo as recorded at 220-m distance. The curve deviations are discussed in the text. The in-stack instrument measured the attenuation of white light across the plume diameter. This instrument was calibrated against sampling measurements.

Fig. 4
Fig. 4

Measurement of the NO2 content in the plume from an oil-refinery stack situated 2 km from the remote sensing system. Two lidar curves for two close-lying wavelengths with different absorption cross sections are shown. A NO2 concentration of 30 ± 10 mg/m3 through the 6-m thick plume is inferred.

Fig. 5
Fig. 5

The lidar curve shows topographic-target echo as well as atmospheric backscattering. Measurements at two wavelengths, 446.5 nm and 448.5 nm, yielded a mean NO2 concentration of 2 ± 2 ppb over the 0.5–5.5-km range interval.

Fig. 6
Fig. 6

Lidar measurement of SO2 emission from an oil-burning power station. Two lidar curves, measured through and beside the smoke plume, have been divided, displaying the smoke-particle scattering as well as the attenuation due to SO2. A SO2 concentration of 760 ± 150 mg/m3 was inferred across the 4.5-m diam plume.

Fig. 7
Fig. 7

Normalized atmospheric backscattering from a distance of 1 km measured at six wavelengths around 300 nm. The reference point and the theoretical values are located at the minimum and maximum absorption wavelengths as obtained in laboratory spectra. A mean concentration value of 25 ± 8 ppb was obtained.

Fig. 8
Fig. 8

Dial curve for range resolved SO2 concentration determination, based on measurements at 298.0 nm and 299.3 nm. In the lower part of the figure, the concentration, averaged over a 500-m interval continuously swept with the distance, is shown. The bars in the figure indicate the uncertainty limits as inferred from the dial curve influenced by statistical photon noise and atmospheric turbulence.

Fig. 9
Fig. 9

Time variation of the SO2 concentration over the city of Goteborg. The average concentration over a distance of 3 km, as determined in dial measurements against a topographic target, is shown with indications of the time periods of measurement and the estimated maximal error. In addition, mean values over a distance of 2 km are given by rings, as obtained in dial measurements using atmospheric backscattering. The day average value as measured by the local Public Health Board (PHB) with conventional chemical methods is also given. This value was obtained at a point along the measurement path.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P λ ( R , Δ R ) = C W σ b N ( R ) Δ R R 2 exp { - 2 0 R [ σ ( λ ) n ( r ) + σ a N ( r ) ] d r } ,
P λ 1 ( R ) P λ 2 ( R ) = C · exp { - 2 0 R [ σ ( λ 1 ) - σ ( λ 2 ) ] n ( r ) d r } ,
P λ 1 ( R ) / P λ 2 ( R )

Metrics