Abstract

A lidar system from an orbital platform is used to simulate the measurement of winds in the atmosphere using different scattering regimes. A high-resolution Fabry-Perot interferometer with a multiple-ring anode detector is used in the simulations. The main factors that limit the accuracy and spatial resolution of the measurement, such as laser bandwidth, detector resolution, and pointing accuracy, have been considered. It is shown that winds in the troposphere and stratosphere can be measured with an accuracy of 2 m/sec using the backscattered signal from aerosols and from cloud tops. In the mesosphere a wind accuracy of 5 m/sec can be achieved using the backscattered signal from the resonance fluorescence of sodium.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
    [CrossRef]
  2. G. W. Grams, Atmos. Technol. No. 6 (Winter1974–75), NCAR.
  3. G. W. Grams, Atmos. Technol. No. 7 (Fall1974), NCAR.
  4. P. B. Hays, U. Mich. private communication (1979).
  5. E. P. Shettle, R. W. Fenn, AFCRL; private communication (1979).
  6. A. Cohen, Eight International Laser Radar Conference; Invited Papers, Drexel University (1977).
  7. J. W. Chamberlain, Physics of the Aurora and the Airglow (Academic, New York, 1961).
  8. R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
    [CrossRef]

1974 (2)

G. W. Grams, Atmos. Technol. No. 7 (Fall1974), NCAR.

R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
[CrossRef]

1972 (1)

G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Aikin, A. C.

R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
[CrossRef]

Benedetti-Miclielangeli, G.

G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Chamberlain, J. W.

J. W. Chamberlain, Physics of the Aurora and the Airglow (Academic, New York, 1961).

Cohen, A.

A. Cohen, Eight International Laser Radar Conference; Invited Papers, Drexel University (1977).

Congeduti, F.

G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, AFCRL; private communication (1979).

Fiocco, G.

G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

Goldberg, R. A.

R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
[CrossRef]

Grams, G. W.

G. W. Grams, Atmos. Technol. No. 7 (Fall1974), NCAR.

G. W. Grams, Atmos. Technol. No. 6 (Winter1974–75), NCAR.

Hays, P. B.

P. B. Hays, U. Mich. private communication (1979).

Krishna Murthy, B. V.

R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, AFCRL; private communication (1979).

Atmos. Technol. No. 7 (1)

G. W. Grams, Atmos. Technol. No. 7 (Fall1974), NCAR.

J. Atmos. Sci. (1)

G. Benedetti-Miclielangeli, F. Congeduti, G. Fiocco, J. Atmos. Sci. 29, 906 (1972).
[CrossRef]

J. Geophys. Res. (1)

R. A. Goldberg, A. C. Aikin, B. V. Krishna Murthy, J. Geophys. Res. 79, 2473 (1974).
[CrossRef]

Other (5)

G. W. Grams, Atmos. Technol. No. 6 (Winter1974–75), NCAR.

P. B. Hays, U. Mich. private communication (1979).

E. P. Shettle, R. W. Fenn, AFCRL; private communication (1979).

A. Cohen, Eight International Laser Radar Conference; Invited Papers, Drexel University (1977).

J. W. Chamberlain, Physics of the Aurora and the Airglow (Academic, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The number of photons per joule of transmitted energy per unit area of the receiver (m2) backscattered from a 1-km aerosol layer in a single pulse as a function of altitude.

Fig. 2
Fig. 2

Uncertainty in the wind measurement from aerosol backscattering as a function of the angle between the line of sight and the vertical direction (θ).

Fig. 3
Fig. 3

The number of pulses to average as a function of altitude in order to obtain an accuracy of 2 m/sec in the wind measurement from aerosol backscattering.

Fig. 4
Fig. 4

The number of photons per joule of transmitted energy per unit area of the receiver (m2) backscattered from a 1-km sodium layer in a single pulse as a function of laser bandwidth.

Fig. 5
Fig. 5

The number of pulses to average as a function of laser bandwidth in order to obtain an accuracy of 5 m/sec in the wind measurement from sodium scattering.

Fig. 6
Fig. 6

The number of photons per joule of transmitted energy per unit area of the receiver (m2) backscattered from a 3-km Mg+ layer in a single pulse as a function of altitude.

Tables (1)

Tables Icon

Table I Lidar Parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P ( λ ) = P T ( π ) 1 / 2 α 1 exp ( - Δ λ 2 / α 1 2 ) ,
σ ( λ ) = σ 0 ( π ) 1 / 2 α D exp ( - Δ λ 2 / α D 2 ) ,
P R ( λ , H ) = P T · k · A · β ( H , λ 0 ) · Δ h · q 2 ( H , λ 0 ) 4 π H 2 × exp [ - Δ λ 2 / ( α 1 2 + α D 2 ) ] π ( α D 2 + α 1 2 ) 1 / 2 ,
P R ( λ , H ) = P T · k · A · σ 0 · N · Δ h · q 2 ( λ , H 0 ) 4 π H 2 × exp [ - Δ λ 2 ( 1 α 1 2 + 1 α D 2 ) ] π α 1 α D .
A ( Δ λ ) = ( 1 - R 1 + R ) [ 1 + 2 n = 1 R n cos 2 π n ( Δ λ FSR + λ 0 θ 0 2 2 FSR + λ 0 Δ θ 2 8 FSR ) * sinc ( n λ 0 θ 0 Δ θ FSR ) ] ,
I R ( λ , H ) = ( 1 - R 1 + R ) P T · k · A · β ( λ 0 , H ) · Δ h · q 2 ( λ 0 , H ) · λ 0 4 π H 2 h c × { 1 + 2 n = 1 R n exp [ - n 2 π 2 ( α D 2 + α 1 2 ) ( FSR ) 2 ] cos 2 π n × ( Δ λ FSR + λ 0 θ 0 2 2 FSR + λ 0 Δ θ 2 8 FSR ) sinc ( n λ 0 θ 0 Δ θ FSR ) } ,
I R ( λ , H ) = ( 1 - R 1 + R ) P T · k · A σ e · N · Δ h · q 2 ( λ 0 , H ) · λ 0 4 π H 2 h c π × 1 ( α 1 2 + α D 2 ) 1 / 2 × { 1 + 2 n = 1 R n exp [ - n 2 π 2 α 2 ( FSR ) 2 ] cos 2 π n × ( Δ λ FSR + λ 0 θ 0 2 2 FSR + λ 0 Δ θ 2 8 FSR ) sinc ( n λ 0 θ 0 Δ θ FSR ) } ,
E FP = π 2 2 D FP Δ λ scan λ 0 ,
D T θ T = D FP ( 2 Δ λ scan λ 0 ) 1 / 2 ,
ω 1 C λ 0 ( I i - 1 - l i + 1 ) 2 I max 1 ( T / λ ) max ,
δ ω 1 = C 2 λ 0 1 ( I max ) 1 / 2 ( T / λ ) max .
ω h = ω 1 sin θ - V s cos ψ ,
δ ω h = [ ( ω h ω 1 ) 2 δ ω 1 2 + ( ω h ψ ) 2 δ ψ 2 + ( ω h θ ) 2 δ θ 2 ] 1 / 2 ,
δ ω h = [ ( 1 sin θ ) 2 δ ω 1 2 + ( V s sin ψ ) 2 δ ψ 2 + ( ω 1 cos θ sin 2 θ ) 2 δ θ 2 ] 1 / 2 .

Metrics