Abstract

A passive pulse-shaping system capable of producing optical pulses of arbitrary temporal profile on the subnansecond time scale is described and analyzed. The system uses a pair of gratings in a delay line and various filtering operations. An experimental investigation of the system is described, and several results are included.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Johnson, W. E. Martin, K. R. Guinn, Lawrence Livermore Laboratory Annual Report 50021-76 (1976), p. 2–316.
  2. J. L. Hughes, P. J. Donohue, Opt. Commun. 12, 302 (1974).
    [Crossref]
  3. J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
    [Crossref]
  4. J. Soures, S. Kumpan, J. Hoose, Appl. Opt. 13, 2081 (1974).
    [Crossref] [PubMed]
  5. C. E. Thomas, L. D. Siebert, Appl. Opt. 15, 462 (1976).
    [Crossref] [PubMed]
  6. T. Hirshfeld, H. J. Caulfield, J. Opt. Soc. Am. 68, 28 (1978).
    [Crossref]
  7. H. Bates, J. Opt. Soc. Am. 68, 1435A (1978).
    [Crossref]
  8. B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
    [Crossref]
  9. J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
    [Crossref]
  10. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [Crossref]

1978 (2)

1976 (2)

B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
[Crossref]

C. E. Thomas, L. D. Siebert, Appl. Opt. 15, 462 (1976).
[Crossref] [PubMed]

1974 (3)

J. L. Hughes, P. J. Donohue, Opt. Commun. 12, 302 (1974).
[Crossref]

J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
[Crossref]

J. Soures, S. Kumpan, J. Hoose, Appl. Opt. 13, 2081 (1974).
[Crossref] [PubMed]

1973 (1)

J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
[Crossref]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Bates, H.

H. Bates, J. Opt. Soc. Am. 68, 1435A (1978).
[Crossref]

Caulfield, H. J.

Colombeau, B.

B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
[Crossref]

Desbois, J.

J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
[Crossref]

Donohue, P. J.

J. L. Hughes, P. J. Donohue, Opt. Commun. 12, 302 (1974).
[Crossref]

Froehly, C.

B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
[Crossref]

Gires, F.

J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
[Crossref]

Guinn, K. R.

B. C. Johnson, W. E. Martin, K. R. Guinn, Lawrence Livermore Laboratory Annual Report 50021-76 (1976), p. 2–316.

Hirshfeld, T.

Hoose, J.

Hughes, J. L.

J. L. Hughes, P. J. Donohue, Opt. Commun. 12, 302 (1974).
[Crossref]

Johnson, B. C.

B. C. Johnson, W. E. Martin, K. R. Guinn, Lawrence Livermore Laboratory Annual Report 50021-76 (1976), p. 2–316.

Kumpan, S.

Loree, T. R.

J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
[Crossref]

Martin, W. E.

B. C. Johnson, W. E. Martin, K. R. Guinn, Lawrence Livermore Laboratory Annual Report 50021-76 (1976), p. 2–316.

McCall, G.

J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
[Crossref]

Siebert, L. D.

Soures, J.

Thomas, C. E.

Thorne, J. M.

J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
[Crossref]

Tournois, P.

J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
[Crossref]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

Vampouille, M.

B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

J. Desbois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973).
[Crossref]

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[Crossref]

J. Appl. Phys. (1)

J. M. Thorne, T. R. Loree, G. McCall, J. Appl. Phys. 45, 3072 (1974).
[Crossref]

J. Opt. Soc. Am. (2)

Opt. Commun. (2)

B. Colombeau, M. Vampouille, C. Froehly, Opt. Commun. 19, 201 (1976).
[Crossref]

J. L. Hughes, P. J. Donohue, Opt. Commun. 12, 302 (1974).
[Crossref]

Other (1)

B. C. Johnson, W. E. Martin, K. R. Guinn, Lawrence Livermore Laboratory Annual Report 50021-76 (1976), p. 2–316.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The two-grating pulse shaper.

Fig. 2
Fig. 2

Experimental layout.

Fig. 3
Fig. 3

Pulse shaper input (bounced) and output for no filters. Scale is ~100 psec/div.

Fig. 4
Fig. 4

Edge response of the two-grating pulse shaper.

Fig. 5
Fig. 5

Opaque strip filtering operation giving rise to split pulse.

Fig. 6
Fig. 6

A continuously varying transmission filter giving a ramped output pulse.

Fig. 7
Fig. 7

A split pulse generated by a phase filtering operation.

Fig. 8
Fig. 8

Pulse shaper output (bounced) demonstrating linear chirp. Scale is ~55 psec/div.

Fig. 9
Fig. 9

Photograph of image at streak camera output demonstrating linear chirp.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E i ( t ) = A ( t ) exp [ i ψ ( t ) ] exp ( - i ω 0 t ) ,
E ˜ i ( ω ) = - E i ( t ) exp ( i ω t ) d t .
E i ( t ) = 1 2 π - E ˜ i ( ω ) exp ( - i ω t ) d ω .
T ( ω ) = T 0 - α ( ω - ω 0 ) + 0 ( ω - ω 0 ) 2 .
T ( ω ) = ϕ ( ω ) ω .
ϕ ( ω ) = ϕ 0 + T 0 ( ω - ω 0 ) - α 2 ( ω - ω 0 ) 2 .
G ( ω ) = n η exp [ i ϕ ( ω ) ] ,
G a ( ω ) = η F ( ω ) exp [ i ϕ ( ω ) ]
G p ( ω ) = η exp [ i Φ ( ω ) ] ,
Φ ( ω ) = ϕ ( ω ) + ϕ f ( ω ) ,
ϕ f ( ω ) = 2 n h ( ω ) ω c .
G a p ( ω ) = η F ( ω ) exp [ i Φ ( ω ) ] .
E ˜ 0 ( ω ) = G a p ( ω ) E ˜ i ( ω ) ,
E 0 ( t ) = η 2 π - G a p ( ω ) E ˜ i ( ω ) exp ( - i ω t ) d ω .
E 0 ( t ) = η 2 π - d ω exp ( - i ω t ) exp ( i ϕ 0 ) exp [ i T 0 ( ω - ω 0 ) ] × exp [ - i α ( ω - ω 0 ) 2 2 ] - d t A ( t ) × exp [ i ψ ( t ) ] exp [ i ( ω - ω 0 ) t 1 ] .
E 0 ( t + T 0 ) = ( η 2 π α ) - 2 exp { i [ Φ 0 - π / 4 - ω 0 ( t + T 0 ) ] } × - A ( t ) exp [ i ψ ( t ) ] exp [ i 2 α ( t - t ) 2 ] d t .
E ˜ 0 ( ω ) = G a p ( ω ) E ˜ i ( ω ) ,
E 0 ( t ) = 1 2 π - η F ( ω ) exp [ i Φ ( ω ) ] ( - { A ( t ) exp [ i ψ ( t ) ] × exp ( - i ω 0 t ) } exp ( i ω t ) d t ) exp ( - i ω t ) d ω .
E ˜ 0 ( ω ) = η F ( ω ) exp { i [ ϕ ( ω ) + ϕ f ( ω ) ] } E ˜ i ( ω ) .
E ˜ 0 ( ω ) = R 0 ( ω ) exp [ i θ 0 ( ω ) ] ,
E ˜ i ( ω ) = R i ( ω ) exp [ i θ i ( ω ) ] ,
R 0 ( ω ) exp [ i θ 0 ( ω ) ] = η F ( ω ) exp { i [ ϕ ( ω ) + ϕ f ( ω ) ] } × R i ( ω ) exp [ i θ i ( ω ) ] .
F ( ω ) = R 0 ( ω ) η R i ( ω ) ,
ϕ f ( ω ) = θ 0 ( ω ) - θ i ( ω ) - ϕ ( ω ) + 2 m π ,

Metrics