Abstract

A laser Doppler technique which provides a means of obtaining absolute measurements of the speed of red blood cells (RBCs) flowing in individual retinal vessels is described. Doppler-shift frequency spectra of laser light scattered from the RBCs are obtained for two directions of the scattered light. Each spectrum exhibits a cutoff frequency that is directly related to the maximum RBC speed (Vmax). The difference in cutoff frequencies is used to obtain an absolute measure of Vmax that is independent of the exact orientation of the vessel and of the relative direction of the incident and scattered beams with respect to the flow direction. Preliminary measurements obtained using a prototype instrument are presented.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
    [PubMed]
  2. G. T. Feke, C. E. Riva, J. Opt. Soc. Am. 68, 526 (1978).
    [CrossRef] [PubMed]
  3. A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
    [CrossRef]
  4. O. Pomerantzeff, H. Fish, C. L. Schepens, in Retina Congress, R. C. Pruett, C. D. J. Regan, Eds. (Appleton-Century-Crofts, New York, 1974), pp. 91–100.
  5. F. A. Young, G. A. Leary, Am. J. Phys. Anthropol. 38, 377 (1973).
    [CrossRef] [PubMed]
  6. B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).
  7. C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).
  8. D. H. Sliney, B. C. Freasier, Appl. Opt. 12, 1 (1973).
    [CrossRef] [PubMed]
  9. T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
    [CrossRef] [PubMed]

1978 (2)

G. T. Feke, C. E. Riva, J. Opt. Soc. Am. 68, 526 (1978).
[CrossRef] [PubMed]

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

1974 (1)

T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
[CrossRef] [PubMed]

1973 (3)

C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).

D. H. Sliney, B. C. Freasier, Appl. Opt. 12, 1 (1973).
[CrossRef] [PubMed]

F. A. Young, G. A. Leary, Am. J. Phys. Anthropol. 38, 377 (1973).
[CrossRef] [PubMed]

1972 (1)

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

1962 (1)

A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
[CrossRef]

Benedek, G. B.

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Ben-Sira, I.

T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
[CrossRef] [PubMed]

Bulpitt, C. J.

C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).

Dollery, C. T.

C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).

Eberli, B.

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

Feke, G. T.

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

G. T. Feke, C. E. Riva, J. Opt. Soc. Am. 68, 526 (1978).
[CrossRef] [PubMed]

Fish, H.

O. Pomerantzeff, H. Fish, C. L. Schepens, in Retina Congress, R. C. Pruett, C. D. J. Regan, Eds. (Appleton-Century-Crofts, New York, 1974), pp. 91–100.

Freasier, B. C.

Kohner, E. M.

C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).

Leary, G. A.

F. A. Young, G. A. Leary, Am. J. Phys. Anthropol. 38, 377 (1973).
[CrossRef] [PubMed]

A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
[CrossRef]

Pomerantzeff, O.

O. Pomerantzeff, H. Fish, C. L. Schepens, in Retina Congress, R. C. Pruett, C. D. J. Regan, Eds. (Appleton-Century-Crofts, New York, 1974), pp. 91–100.

Richards, M. J.

A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
[CrossRef]

Riva, C. E.

G. T. Feke, C. E. Riva, J. Opt. Soc. Am. 68, 526 (1978).
[CrossRef] [PubMed]

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
[CrossRef] [PubMed]

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Rogers, F.

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

Ross, B.

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

Schepens, C. L.

O. Pomerantzeff, H. Fish, C. L. Schepens, in Retina Congress, R. C. Pruett, C. D. J. Regan, Eds. (Appleton-Century-Crofts, New York, 1974), pp. 91–100.

Sliney, D. H.

Sorsby, A.

A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
[CrossRef]

Tanaka, T.

T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
[CrossRef] [PubMed]

Young, F. A.

F. A. Young, G. A. Leary, Am. J. Phys. Anthropol. 38, 377 (1973).
[CrossRef] [PubMed]

Am. J. Phys. Anthropol. (1)

F. A. Young, G. A. Leary, Am. J. Phys. Anthropol. 38, 377 (1973).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bibl. Anat. (1)

C. J. Bulpitt, E. M. Kohner, C. T. Dollery, Bibl. Anat. 11, 448 (1973).

Invest. Ophthalmol. (1)

C. E. Riva, B. Ross, G. B. Benedek, Invest. Ophthalmol. 11, 936 (1972).
[PubMed]

J. Opt. Soc. Am. (1)

Science (1)

T. Tanaka, C. E. Riva, I. Ben-Sira, Science 186, 830 (1974).
[CrossRef] [PubMed]

Supplement to Invest. Ophthalmol. Visual Sci. (1)

B. Eberli, G. T. Feke, F. Rogers, C. E. Riva, Association for Research in Vision and Ophthalmology, Sarasota, 1978, Supplement to Invest. Ophthalmol. Visual Sci., April, 1978, p. 268 (Abstract).

Vision Res. (1)

A. Sorsby, G. A. Leary, M. J. Richards, Vision Res. 2, 309 (1962).
[CrossRef]

Other (1)

O. Pomerantzeff, H. Fish, C. L. Schepens, in Retina Congress, R. C. Pruett, C. D. J. Regan, Eds. (Appleton-Century-Crofts, New York, 1974), pp. 91–100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scattering geometry operative in the general case for bidirectional measurements from vessels in the posterior pole of the eye. Incident and scattered beams are indicated as passing through the pupil of the eye. (b) Separation of the (x,y) plane into two regions determined by the direction of zero Doppler shift in the special case of V = Vy.

Fig. 2
Fig. 2

Gullstrand schematic eye model with contact lens, used to relate the intraocular angle Δα to the measurable extraocular angle Δα′.

Fig. 3
Fig. 3

Data on the average dioptric power of the lens of the eye P ¯ and on the average axial length of the eye L ¯ as a function of total ocular refraction. (From Sorsby et al.3)

Fig. 4
Fig. 4

Schematic diagram of the optical and electronic arrangement used to record the Doppler-shift photocurrent from retinal vessels. The components are described in the text.

Fig. 5
Fig. 5

DSFS obtained for two directions of the scattered light from an owl monkey retinal vein. Arrows indicate estimated cutoff frequencies.

Fig. 6
Fig. 6

Continuous uncalibrated recording of the relative systolic/diastolic variations of Vmax in an owl monkey retinal artery during several cardiac cycles.

Fig. 7
Fig. 7

DSFS obtained for two directions of the scattered light from an owl monkey retinal artery: (a), (b) during peak systole, and (c), (d) during minimum diastole. Arrows indicate estimated cutoff frequencies.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

V max = λ f max n ( cos θ s - cos θ i ) ,
K i = ( K i x , K i y , K i z )
K 1 = ( K 1 x , K 1 y , 0 )             K 2 = ( K 2 x , K 2 y , 0 ) .
f 1 = 1 2 π ( K 1 - K i ) · V ,
f 2 = 1 2 π ( K 2 - K i ) · V .
Δ f = 1 2 π ( K 2 - K 1 ) · V = 1 2 π ( K 2 x V x + K 2 y V y - K 1 x V x - K 1 y V y ) .
K 1 x = 2 π n λ cos α 1 ,             K 1 y = 2 π n λ sin α 1 , K 2 y = 2 π n λ sin α 2 .             K 2 x = 2 π n λ cos α 2
Δ f = n V cos β λ [ cos ( π - γ ) cos α 2 + sin ( π - γ ) sin α 2 - cos ( π - γ ) cos α 1 - sin ( π - γ ) sin α 1 ] .
Δ f = n V cos β λ [ cos ( γ + α 1 ) - cos ( γ + α 2 ) ] , Δ f = n V cos β λ [ sin ( π 2 - γ - α 1 ) - sin ( π 2 - γ - α 2 ) ] . }
Δ f = n V cos β λ ( π 2 - γ - α 1 - π 2 + γ + α 2 ) = n V cos β Δ α λ ,
V = λ Δ f n Δ α cos β .
( - K i x , K i y , 0 ) .
Δ α = Δ α n c + a P ,
Δ α = Δ α n c ( 1 - P l ) .
V = n c n λ Δ f Δ α cos β ( 1 - P l ) .
V = λ Δ f Δ α cos β ( 1 - P l ) .

Metrics