Abstract

Laser recording with a Gaussian beam and focusing lens of finite aperture is analyzed. It is shown that, for a Laser recording given recorded spot size, optimal values exist for the lens f/number and filling factor, the ratio of Gaussian to lens diameter, which minimize power. Sensitivity curves are presented for power vs f/beam diameter number and vs filling factor. The on-axis focal plane intensity is maximized by deviating from the optimal factor at the expense of a slight power increase. Effects of power variations on recorded spot size are filling considered.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Broadbent, J. SMPTE 83, 554 (1974).
    [CrossRef]
  2. G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).
  3. D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).
  4. A. L. Buck, Proc. IEEE 55, 448 (1967).
    [CrossRef]
  5. H. M. Haskal, A. N. Rosen, Appl. Opt. 10, 1354 (1971).
    [CrossRef] [PubMed]

1979

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

1974

K. D. Broadbent, J. SMPTE 83, 554 (1974).
[CrossRef]

1971

H. M. Haskal, A. N. Rosen, Appl. Opt. 10, 1354 (1971).
[CrossRef] [PubMed]

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

1967

A. L. Buck, Proc. IEEE 55, 448 (1967).
[CrossRef]

Broadbent, K. D.

K. D. Broadbent, J. SMPTE 83, 554 (1974).
[CrossRef]

Buck, A. L.

A. L. Buck, Proc. IEEE 55, 448 (1967).
[CrossRef]

Chan, A. Y.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Haskal, H. M.

Kenney, G. C.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Kohler, T. R.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Lou, D. Y. K.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Maydan, D.

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

McFarlane, R.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Nadan, J. S.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Rosen, A. N.

Wagner, J. C.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Zernike, F.

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

Appl. Opt.

Bell Syst. Tech. J.

D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).

IEEE Spectrum

G. C. Kenney, D. Y. K. Lou, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. C. Wagner, F. Zernike, IEEE Spectrum 16, 33 (1979).

J. SMPTE

K. D. Broadbent, J. SMPTE 83, 554 (1974).
[CrossRef]

Proc. IEEE

A. L. Buck, Proc. IEEE 55, 448 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optimum filling factor vopt vs k.

Fig. 2
Fig. 2

Normalized recording power vs k, with v = vopt.

Fig. 3
Fig. 3

Normalized recording power vs filling factor.

Fig. 4
Fig. 4

Peak-to-threshold intensity ratio vs k, with v = vopt.

Fig. 5
Fig. 5

Normalized peak-to-threshold intensity ratio vs filling factor v.

Fig. 6
Fig. 6

Power sensitivity factor M vs k, with v = vopt.

Fig. 7
Fig. 7

Power sensitivity factor M vs v.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = ( 2 P / π w 2 ) exp ( - 2 r 2 / w 2 ) ,
I ( ρ ) = 8 π P w 2 λ 2 f 2 [ 0 a exp ( - r 2 / w 2 ) J 0 ( 2 π λ f r ρ ) r d r ] 2 ,
I th = 8 π P w 2 λ 2 f 2 [ 0 a exp ( - r 2 / w 2 ) J 0 ( 2 π λ f r ρ 0 ) r d r ] 2 ,
P = λ 2 f 2 w 2 I t h 8 π 1 [ 0 a exp ( - r 2 / w 2 ) J 0 ( 2 π λ f r ρ 0 ) r d r ] 2 .
k = ( 2 π a ρ 0 ) / ( λ f ) = ( π ρ 0 ) / ( λ F ) ,
P ( k , v ) = π ρ 0 2 2 v 2 k 2 I th 1 [ 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u ] 2 .
P g = π ρ 0 2 e I th ,
P ( k , v ) P g = 1 2 e v 2 k 2 1 [ 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u ] 2 .
1 k = 0 1 exp ( - u 2 / v 2 ) J 1 ( k u ) u 2 d u 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u ,
v 2 = 2 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u 3 d u 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u .
( 1 - k 2 v 2 2 ) 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u = exp ( - 1 / v 2 ) × [ J 0 ( k ) - k v 2 2 J 1 ( k ) ] ,
( 1 - k 2 v 2 2 ) 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u = - exp ( - 1 / v 2 ) k v 2 2 J 1 ( k ) .
( π ρ 0 ) / ( λ F ) = 2.4048 ;             F = f / 2 a = 2.063.
I peak = 2 P w 2 λ 2 f 2 [ 1 - exp ( - a 2 / w 2 ) 2 ] 2 .
I peak ( v ) = π P 2 λ 2 F 2 [ 1 - exp ( - 1 / v 2 ) ] 2 1 / v 2 .
exp ( 1 / v 2 ) = 2 v 2 + 1.
R = I peak I th = 1 4 v 4 [ 1 - exp ( - 1 / v 2 ) 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u ] 2 .
R N = R P ( v opt ) P ( v ) ,
d P d ρ 0 = 2 P 2 π λ f 0 a exp ( - r 2 / w 2 ) J 1 ( 2 π λ f r ρ 0 ) r 2 d r 0 a exp ( - r 2 / w 2 ) J 0 ( 2 π λ f r ρ 0 ) r d r .
d ρ 0 ρ 0 = [ 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u k 2 v 2 0 1 exp ( - u 2 / v 2 ) J 0 ( k u ) u d u - k v 2 J 1 ( k ) exp ( - 1 / v 2 ) ] × d P P .

Metrics