Abstract

For various reasons when optical multilayer systems are constructed the thicknesses of individual layers depart from the desired values. This often results in an unacceptable performance of the filter. In this paper a production method for nonabsorbing multilayer coatings is described, which is based on monochromatic transmittance monitoring and which, to a certain degree, compensates for these errors. After the deposition of each layer a computer program is provided with the actual monitoring data from which the layer thickness is deduced. The program then reoptimizes the performance of the system by changing the thicknesses of the remaining layers. A numerical and experimental study has been made of the production of a seven-layer neutral beam splitter on glass. Theoretical data are also given for an AR coating on glass.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
    [CrossRef]
  2. J. A. Dobrowolski, D. Lowe, Appl. Opt. 17, 3039 (1978).
    [CrossRef] [PubMed]
  3. L. I. Epstein, J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  4. E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
    [CrossRef]
  5. B. Vidal, “Controle en temps reel, par miniordinateur, de la realisation de filtres spectraux multidielectriques,” Thesis, U. Marseilles (1978).
  6. D. J. Wilde, Optimum Seeking Methods (Prentice-Hall, Englewood Cliffs, N.J., 1965).

1978 (1)

1976 (1)

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

1965 (1)

1952 (1)

Dobrowolski, J. A.

Epstein, L. I.

Lowe, D.

Pelletier, E.

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

Roche, P.

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

Vidal, B.

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

B. Vidal, “Controle en temps reel, par miniordinateur, de la realisation de filtres spectraux multidielectriques,” Thesis, U. Marseilles (1978).

Wilde, D. J.

D. J. Wilde, Optimum Seeking Methods (Prentice-Hall, Englewood Cliffs, N.J., 1965).

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Nouv. Rev. Opt. Appl. (1)

E. Pelletier, P. Roche, B. Vidal, Nouv. Rev. Opt. Appl. 7, 353 (1976).
[CrossRef]

Other (2)

B. Vidal, “Controle en temps reel, par miniordinateur, de la realisation de filtres spectraux multidielectriques,” Thesis, U. Marseilles (1978).

D. J. Wilde, Optimum Seeking Methods (Prentice-Hall, Englewood Cliffs, N.J., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the computer program.

Fig. 2
Fig. 2

Calculated results for a seven-layer 50% beam splitter: (A) transmittance of an optimized beam splitters; (B) monitoring without reoptimization of the system; and (C) monitoring with reoptimization of the system.

Fig. 3
Fig. 3

Experimental results for a seven-layer 50% beam splitter (heavy lines—ideal transmittance curves): (A) calculated and experimental transmittance on completion of each layer; and (B) effect of serious perturbations of the thicknesses of the first two layers (see text).

Fig. 4
Fig. 4

Calculated results for a six-layer AR coating on glass: (A) transmittance of optimized AR coating; (B) monitoring without reoptimization of the system; and (C) monitoring with reoptimization of the system.

Fig. 5
Fig. 5

Numerical minimization of a function.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T P = T 1 ( 1 + σ · G ) ,
n H = [ ( 2.17 ) 2 + 0.27 / λ 2 ] 1 / 2 , n L = [ ( 1.30 ) 2 + 0.01 / λ 2 ] 1 / 2 ,
S - 1.6 H - 1.4 L - 1.5 H - 0.4 L - 1.2 H - 0.9 L - 0.3 H - A ,
S - 1.63 H - 1.32 L - 1.52 H - 0.38 L - 1.20 H - 0.78 L - 0.29 H - A ,
S - 0.3 H - 0.3 L - 0.3 H - 0.3 L - 0.3 H - 0.3 L - A .
S - 0.318 H - 0.339 L - 0.822 H - 0.258 L - 0.515 H - 1.111 L - A .
x 2 = x min + ( x max - x min ) ( 5 ) 1 / 2 - 1 2 = x min + 0.618 ( x max - x min ) , x 1 = x min + ( x max - x min ) [ ( 5 ) 1 / 2 - 1 2 ] 2 = x min + 0.382 ( x max - x min ) .

Metrics