Abstract

A hybrid technique for wide-bandwidth high-resolution acoustooptic spectrum analysis is described that combines features of 2-D space-integrating and time-integrating techniques. Performance features include extended small-signal detectability, improved optical efficiency, and insensitivity to high frequency laser noise. An optically transformed periodic chirp provides a distributed local oscillator that permits wide system bandwidth.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Thomas, Appl. Opt. 5, 1782 (1966).
    [CrossRef] [PubMed]
  2. T. M. Turpin, Proc. Soc. Photo-Opt. Instrum. Eng. 154, 196 (1978).
  3. L. D. Dickson, Appl. Opt. 11, 2196 (1972).
    [CrossRef] [PubMed]
  4. D. L. Hecht, Proc. Soc. Photo-Opt. Instrum. Eng. 90, 148 (1976).

1978 (1)

T. M. Turpin, Proc. Soc. Photo-Opt. Instrum. Eng. 154, 196 (1978).

1976 (1)

D. L. Hecht, Proc. Soc. Photo-Opt. Instrum. Eng. 90, 148 (1976).

1972 (1)

1966 (1)

Dickson, L. D.

Hecht, D. L.

D. L. Hecht, Proc. Soc. Photo-Opt. Instrum. Eng. 90, 148 (1976).

Thomas, C. E.

Turpin, T. M.

T. M. Turpin, Proc. Soc. Photo-Opt. Instrum. Eng. 154, 196 (1978).

Appl. Opt. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

T. M. Turpin, Proc. Soc. Photo-Opt. Instrum. Eng. 154, 196 (1978).

D. L. Hecht, Proc. Soc. Photo-Opt. Instrum. Eng. 90, 148 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified schematic of hybrid spectrum analyzer.

Fig. 2
Fig. 2

A pure tone signal as observed in the detector plane.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

U ( f ) = - S ( t ) exp ( i 2 π f t ) d t .
A ( x , t ) = - S [ t - ξ / v ] rect ( ξ / D ) exp ( - i 2 π α x ξ ) d ξ ,
rect ( ξ / D ) = 1 - D / 2 ξ D / 2 0 otherwise
A ( x , t ) = - exp ( - i 2 π z v t ) U ( z v ) sinc π D ( α x - z ) d z .
C 1 ( t ) = n rect ( t - n T 1 T 1 ) cos [ a ( t - n T 1 ) 2 + b ( t - n T 1 ) ] ,
a = π Δ f 1 / T 1 , b = 2 π f min .
R ( x , t ) = c p exp ( - i 2 π p t / T 1 ) rect ( p N 1 - r ) × sinc π T 1 [ α v x - ( p / T 1 ) ] ,
f c - Δ f 1 2 p T 1 f c + Δ f 1 2 .
I ( x , y , t ) = R ( x , t ) exp ( i K y ) + A ( x , t ) exp ( - i 2 π α u y t ) 2 ,
E o ( x , y ) = T 2 + - T 2 / 2 T 2 / 2 A ( x , t ) 2 d t
E s ( x , y ) = exp ( - i K y ) - T 2 / 2 T 2 / 2 R * ( x , t ) A ( x , t ) exp ( i 2 π α u y t ) d t + complex conjugate .
E s ( x , y ) = c exp ( - i K y ) p - U ( f ) sinc π T 1 ( α v x - f ) × sinc π T 2 [ α u y + ( p / T 1 ) - f ] d f × sinc π T 1 [ α v x - ( p / T 1 ) ] + c . c . ,
δ f = 1 / T 2 = Δ f 1 / N 1 N 2 .
r ( t , ξ ) = n exp { [ a ( t - n T 1 - ξ / v ) 2 + b ( t - n T 1 - ξ / v ) ] } × rect ( t - n T 1 - ξ / v ) T 1 × rect ξ / D .
R ( t , x ) = - r ( t , ξ ) exp ( - i 2 π α ξ x ) d ξ = D - V ( x - x , t ) sinc π α D x d x ,
V ( x , t ) = n - exp { i [ a ( t - n T 1 - ξ / v ) 2 + b ( t - n T 1 - ξ / v ) ] - i 2 π α x ξ } × rect ( t - n T 1 - ξ / v ) / T 1 d ξ .
V ( x , t ) = v n = - exp [ - i 2 π α v x ( t - n T 1 ) ] × - exp [ i a z 2 - i ( 2 π α v x - b ) z ] rect ( z / T 1 ) d z .
K - exp [ - i ( π α v ) 2 ( x - x + b ) 2 / a ] sinc π T 1 ( v α x - b ) d x ,
V ( x , t ) = c exp [ - i ( 2 π α v x - b ) 2 / 4 a ] rect x - r D D × n exp [ - i 2 π α v x ( t - n T 1 ) ] ,
n = - exp ( i a n ) = 2 π n = - δ ( a - 2 π p ) ,
V ( x , t ) = c exp ( - i 2 π α v x t ) p δ [ x - ( p / α v T 1 ) ] ,
R ( x , t ) = c p exp { - i 2 π p t / T 1 - i [ ( 2 π p / T 1 ) - b ] 2 / 4 a } × rect ( p N 1 - r ) sinc π T 1 [ α v x - ( p / T 1 ) ] ,

Metrics