Abstract

This paper is Part 2 of a two-part sequence describing an in situ particle sizing counter. Part 2 discusses experimental measurements in both ambient and combustion temperature conditions. Ambient temperature measurements are obtained using a well-characterized mixture of monodispersions of known size and concentration. The amplitude data are unfolded by the technique described in Part 1, and number density vs particle diameter results are compared with the known input mixture of four monodispersions. An analysis of error propagation in the inversion scheme is presented. For combustion conditions, known mixtures of silica beads in the 1–30-μm range are injected into a small burner, and measurements by the particle counter are shown to reproduce satisfactorily the input size distribution of the glass bead polydispersion. The paper concludes with an assessment of potential applications of the counter to high number density, absorbing, and irregular aerosols.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Holve, S. A. Self, Appl. Opt. 18, 1632 (1979).
    [CrossRef] [PubMed]
  2. R. Berglund, B. Liu, Environ. Sci. Technol. 1, 147 (1973).
    [CrossRef]
  3. D. D. Cooke, M. Kerker, Appl. Opt. 14, 734 (1975).
    [CrossRef] [PubMed]
  4. R. Cadle, Measurement of Airborne Particles (Wiley, New York, 1975), p. 75.
  5. V. Marple, K. Rubow, J. Aerosol Sci. 7, 425 (1976).
    [CrossRef]
  6. V. Marple, K. Rubow, Am. Ind. Hyg. Assoc. J. 39, 210 (1978).
    [CrossRef] [PubMed]

1979 (1)

1978 (1)

V. Marple, K. Rubow, Am. Ind. Hyg. Assoc. J. 39, 210 (1978).
[CrossRef] [PubMed]

1976 (1)

V. Marple, K. Rubow, J. Aerosol Sci. 7, 425 (1976).
[CrossRef]

1975 (1)

1973 (1)

R. Berglund, B. Liu, Environ. Sci. Technol. 1, 147 (1973).
[CrossRef]

Berglund, R.

R. Berglund, B. Liu, Environ. Sci. Technol. 1, 147 (1973).
[CrossRef]

Cadle, R.

R. Cadle, Measurement of Airborne Particles (Wiley, New York, 1975), p. 75.

Cooke, D. D.

Holve, D.

Kerker, M.

Liu, B.

R. Berglund, B. Liu, Environ. Sci. Technol. 1, 147 (1973).
[CrossRef]

Marple, V.

V. Marple, K. Rubow, Am. Ind. Hyg. Assoc. J. 39, 210 (1978).
[CrossRef] [PubMed]

V. Marple, K. Rubow, J. Aerosol Sci. 7, 425 (1976).
[CrossRef]

Rubow, K.

V. Marple, K. Rubow, Am. Ind. Hyg. Assoc. J. 39, 210 (1978).
[CrossRef] [PubMed]

V. Marple, K. Rubow, J. Aerosol Sci. 7, 425 (1976).
[CrossRef]

Self, S. A.

Am. Ind. Hyg. Assoc. J. (1)

V. Marple, K. Rubow, Am. Ind. Hyg. Assoc. J. 39, 210 (1978).
[CrossRef] [PubMed]

Appl. Opt. (2)

Environ. Sci. Technol. (1)

R. Berglund, B. Liu, Environ. Sci. Technol. 1, 147 (1973).
[CrossRef]

J. Aerosol Sci. (1)

V. Marple, K. Rubow, J. Aerosol Sci. 7, 425 (1976).
[CrossRef]

Other (1)

R. Cadle, Measurement of Airborne Particles (Wiley, New York, 1975), p. 75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Nondimensional count rate vs pulse-height analyzer channel number for particle sizes dk = 6 μm, 12 μm, 17 μm, and 25 μm.

Fig. 2
Fig. 2

Experimental results of oleic acid particles compared with theoretical response function F(d).

Fig. 3
Fig. 3

Nondimensional cross section calibration results for particle sizes ranging from 2.9 μm to 25 μm.

Fig. 4
Fig. 4

Pulse height analyzer data for a mixture of 6-μm, 12-μm, 17-μm, and 25-μm particles.

Fig. 5
Fig. 5

Number distribution results following application of Eq. (26), Part 1, to the data of Fig. 4.

Fig. 6
Fig. 6

Number–amplitude spectrum for nominal 10–15-μm particle size distribution.

Fig. 7
Fig. 7

Comparison of results for run D237 (10–15 μm nominal) using two independent calibrations (taken one week apart) to evaluate ΔS.

Fig. 8
Fig. 8

Comparison of results for cold and hot flows with Coulter count of nominal 10–15-μm particle distribution.

Fig. 9
Fig. 9

Comparison of results for cold and hot flows for nominal 3–9-μm particle distribution.

Fig. 10
Fig. 10

Comparison of results for cold and hot flows for nominal 1–30-μm particle distribution. Solid line is the distribution supplied by the particle manufacturer.

Fig. 11
Fig. 11

Response curves for a variety of aerosols (absorbing and nonabsorbing) using a Royco forwardscatter counter.

Tables (3)

Tables Icon

Table I Variation of Measurement Volume Cross Section Skr,k, With Pinhole Diameter dk and Amplitude Reference Level Ākr/Āk

Tables Icon

Table II Comparison of Number Density Results for Fig. 3 and Calibrations

Tables Icon

Table III Comparison of Ni for Perturbed and Average Values of ΔS

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N k = C k - r , k U · S k - r , k ,
| Δ C i C i | 2 / ( C i ) 1 / 2 ,
C 1 = ( N 1 + N 2 + . + N m ) U Δ S , C 2 = N 2 + . + N m ) U Δ S , C m = ( N m ) U Δ S .
N i = C i - C i + 1 , i = 1 , m - 1.
| Δ N i N i | = [ ( Δ C i C i ) 2 + ( Δ C i + 1 C i + 1 ) 2 ] 1 / 2 , also
| Δ N i N i | = 2 ( 1 C i + 1 C i + 1 ) 1 / 2 .
Δ S i j = Δ S ¯ i j ( 0.9 + 2 ɛ R N ) ,
Δ N i N i = ± [ ( Δ N i N i ) C E 2 + ( Δ N i N i ) Δ S 2 ] 1 / 2 .
Δ N i N i | 20 = ± [ ( 0.2 ) 2 + ( 5 31 ) 2 ] 1 / 2 = ± 26 % .

Metrics