Abstract

A particle sizing counter suitable for in situ measurements in two-phase flows is presented in a two-part sequence. The technique employs near forwardscatter from the focus of a He–Ne laser beam, together with pulse-height analysis of the signals from individual particles. A novel and essential feature of the technique is a numerical inversion scheme to unfold the dependence of the scattered signals on particle trajectory through the measurement volume. This feature allows the capability of truly in situ measurements with a working space of 50 cm between optical elements. The inversion procedure is performed by an on-line computer or microprocessor unit and uses a prior calibration with monodisperse aerosols of known size. As presently configured, the instrument has a demonstrated capability of determining size distributions in the 1–30-μm diam range, at concentrations up to ~105 cm−3 in flows of temperatures up to 1600 K. The measured dependence of response on particle diameter agrees well with calculations from the Mie scattering theory. It is anticipated that the technique can be extended to cover particle diameters in the 0.5–50-μm range with concentrations up to 106 cm−3. Adaptation to measurements of absorbing and irregular particles can be achieved by a straightforward calibration technique. Part 1 describes the trade offs in the optical design and develops the numerical inversion scheme. Part 2 discusses experimental measurements at ambient conditions and combustion temperatures (1600 K). An assessment of the accuracy of the technique is also presented.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (69)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription