Abstract

The following parameters have been obtained for Plexiglas 55 and Lexan: refractive index n at 486.1 nm, 589.3 nm, and 656.3 nm, the thermooptic constant dn/dT at 632.8 nm, the linear thermal expansion coefficient; the photoelastic constants q11, q12, p11, and p12; and the elastic moduli c11, c12, s11, and s12. The experimental value for the density derivative of refractive index ρ(dn/)T deviates by only a small amount from the value calculated from the Lorentz-Lorenz equation. This is the expected result for molecular solids. The density variation with temperature is the dominant contribution to dn/dT.

© 1979 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Hinchman, Opt. Spectra 9, 36 (1975).
  2. The use of brand names in this paper is for identification purposes only, and in no case does it imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials used in this study are necessarily the best available. It may be noted that Lucite is substantially identical to Plexiglas.
  3. G. E. Fishter, in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1967), Chap. 10.
  4. K. Vedam, Proc. Indian Acad. Sci. Sect. A 31, 450 (1950).
  5. A. Feldman, W. J. McKean. Rev. Sci. Instrum. 46, 1588 (1975).
    [CrossRef]
  6. A. Feldman, R. M. Waxler, D. Horowitz, in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, Eds. (Plenum, New York, 1975), pp. 517–525.
    [CrossRef]
  7. A. Feldman, Electro Opt. Syst. Des. 8, 36 (1976).
  8. R. M. Waxler, C. E. Weir, J. Res. Natl. Bur. Stand. Sect. A 69, 325 (1965).
    [CrossRef]
  9. There is reasonably good internal consistency in these data and in data reported in the rest of the paper, but it must be noted that it is common in polymers to have batch-to-batch variation of properties.10,11
  10. Handbook of Experimental Stress Analysis, M. Hetenyi, Ed. (Wiley, New York, 1950), p. 894.
  11. A. W. Hendry, Photo-Elastic Analysis (Pergamon, New York, 1966), p. 127.
  12. J. B. Saunders, J. Res. Natl. Bur. Stand. 35, 157 (1945).
    [CrossRef]
  13. R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
    [CrossRef]
  14. S. Ramaseshan, K. Vedam, R. S. Krishman, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 139.
  15. K. Vedam, S. Ramaseshan, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 102.
  16. H. Mueller, Phys. Rev. 47, 947 (1935).
    [CrossRef]
  17. H. Mueller, Phys. Rev. 47, 179 (1935).
  18. M. Kastner, Phys. Rev. B 6, 2273 (1972).
    [CrossRef]
  19. R. M. Waxler, G. W. Cleek, J. Res. Natl. Bur. Stand. Sect. A 77, 755 (1973).
    [CrossRef]

1976

A. Feldman, Electro Opt. Syst. Des. 8, 36 (1976).

1975

D. F. Hinchman, Opt. Spectra 9, 36 (1975).

A. Feldman, W. J. McKean. Rev. Sci. Instrum. 46, 1588 (1975).
[CrossRef]

1973

R. M. Waxler, G. W. Cleek, J. Res. Natl. Bur. Stand. Sect. A 77, 755 (1973).
[CrossRef]

1972

M. Kastner, Phys. Rev. B 6, 2273 (1972).
[CrossRef]

1971

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

1965

R. M. Waxler, C. E. Weir, J. Res. Natl. Bur. Stand. Sect. A 69, 325 (1965).
[CrossRef]

1950

K. Vedam, Proc. Indian Acad. Sci. Sect. A 31, 450 (1950).

1945

J. B. Saunders, J. Res. Natl. Bur. Stand. 35, 157 (1945).
[CrossRef]

1935

H. Mueller, Phys. Rev. 47, 947 (1935).
[CrossRef]

H. Mueller, Phys. Rev. 47, 179 (1935).

Cleek, G. W.

R. M. Waxler, G. W. Cleek, J. Res. Natl. Bur. Stand. Sect. A 77, 755 (1973).
[CrossRef]

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

Dodge, M. J.

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

Feldman, A.

A. Feldman, Electro Opt. Syst. Des. 8, 36 (1976).

A. Feldman, W. J. McKean. Rev. Sci. Instrum. 46, 1588 (1975).
[CrossRef]

A. Feldman, R. M. Waxler, D. Horowitz, in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, Eds. (Plenum, New York, 1975), pp. 517–525.
[CrossRef]

Fishter, G. E.

G. E. Fishter, in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1967), Chap. 10.

Hahn, T. A.

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

Hendry, A. W.

A. W. Hendry, Photo-Elastic Analysis (Pergamon, New York, 1966), p. 127.

Hinchman, D. F.

D. F. Hinchman, Opt. Spectra 9, 36 (1975).

Horowitz, D.

A. Feldman, R. M. Waxler, D. Horowitz, in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, Eds. (Plenum, New York, 1975), pp. 517–525.
[CrossRef]

Kastner, M.

M. Kastner, Phys. Rev. B 6, 2273 (1972).
[CrossRef]

Krishman, R. S.

S. Ramaseshan, K. Vedam, R. S. Krishman, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 139.

Malitson, I. H.

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

McKean, W. J.

A. Feldman, W. J. McKean. Rev. Sci. Instrum. 46, 1588 (1975).
[CrossRef]

Mueller, H.

H. Mueller, Phys. Rev. 47, 947 (1935).
[CrossRef]

H. Mueller, Phys. Rev. 47, 179 (1935).

Ramaseshan, S.

K. Vedam, S. Ramaseshan, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 102.

S. Ramaseshan, K. Vedam, R. S. Krishman, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 139.

Saunders, J. B.

J. B. Saunders, J. Res. Natl. Bur. Stand. 35, 157 (1945).
[CrossRef]

Vedam, K.

K. Vedam, Proc. Indian Acad. Sci. Sect. A 31, 450 (1950).

S. Ramaseshan, K. Vedam, R. S. Krishman, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 139.

K. Vedam, S. Ramaseshan, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 102.

Waxler, R. M.

R. M. Waxler, G. W. Cleek, J. Res. Natl. Bur. Stand. Sect. A 77, 755 (1973).
[CrossRef]

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

R. M. Waxler, C. E. Weir, J. Res. Natl. Bur. Stand. Sect. A 69, 325 (1965).
[CrossRef]

A. Feldman, R. M. Waxler, D. Horowitz, in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, Eds. (Plenum, New York, 1975), pp. 517–525.
[CrossRef]

Weir, C. E.

R. M. Waxler, C. E. Weir, J. Res. Natl. Bur. Stand. Sect. A 69, 325 (1965).
[CrossRef]

Electro Opt. Syst. Des.

A. Feldman, Electro Opt. Syst. Des. 8, 36 (1976).

J. Res. Natl. Bur. Stand.

J. B. Saunders, J. Res. Natl. Bur. Stand. 35, 157 (1945).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. A

R. M. Waxler, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, J. Res. Natl. Bur. Stand. Sect. A 75, 163 (1971).
[CrossRef]

R. M. Waxler, G. W. Cleek, J. Res. Natl. Bur. Stand. Sect. A 77, 755 (1973).
[CrossRef]

R. M. Waxler, C. E. Weir, J. Res. Natl. Bur. Stand. Sect. A 69, 325 (1965).
[CrossRef]

Opt. Spectra

D. F. Hinchman, Opt. Spectra 9, 36 (1975).

Phys. Rev.

H. Mueller, Phys. Rev. 47, 947 (1935).
[CrossRef]

H. Mueller, Phys. Rev. 47, 179 (1935).

Phys. Rev. B

M. Kastner, Phys. Rev. B 6, 2273 (1972).
[CrossRef]

Proc. Indian Acad. Sci. Sect. A

K. Vedam, Proc. Indian Acad. Sci. Sect. A 31, 450 (1950).

Rev. Sci. Instrum.

A. Feldman, W. J. McKean. Rev. Sci. Instrum. 46, 1588 (1975).
[CrossRef]

Other

A. Feldman, R. M. Waxler, D. Horowitz, in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, Eds. (Plenum, New York, 1975), pp. 517–525.
[CrossRef]

The use of brand names in this paper is for identification purposes only, and in no case does it imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials used in this study are necessarily the best available. It may be noted that Lucite is substantially identical to Plexiglas.

G. E. Fishter, in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1967), Chap. 10.

There is reasonably good internal consistency in these data and in data reported in the rest of the paper, but it must be noted that it is common in polymers to have batch-to-batch variation of properties.10,11

Handbook of Experimental Stress Analysis, M. Hetenyi, Ed. (Wiley, New York, 1950), p. 894.

A. W. Hendry, Photo-Elastic Analysis (Pergamon, New York, 1966), p. 127.

S. Ramaseshan, K. Vedam, R. S. Krishman, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 139.

K. Vedam, S. Ramaseshan, in Progress in Crystal Physics, R. S. Krishman, Ed. (Interscience, New York, 1958), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Coefficient of linear thermal expansion as a function of temperature for Plexiglas 55 and Lexan. (The values represented by triangles have been calculated from data reported by Rohm and Haas Company.)

Fig. 2
Fig. 2

Thermooptic coefficient as a function of temperature for Plexiglas 55 and Lexan.

Tables (3)

Tables Icon

Table I Optical Characterization of Plexiglas 55 and Lexan

Tables Icon

Table II Coefficient of Linear Thermal Expansion α and Thermooptic Coefficient dn/dT for Plexiglas 55 a

Tables Icon

Table III Coefficient of Linear Thermal Expansion α and Thermooptic Coefficient dn/dT for Lexan a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( Δ N / Δ P ) = ( 2 t / λ ) [ ( n 3 / 2 ) q - ( n - 1 ) s 12 ]
( Δ N / Δ P ) = ( 2 t / λ ) [ ( n 3 / 2 ) q - n s 12 ]
( Δ N / Δ P ) = ( 2 t / λ ) [ ( n 3 / 2 ) ( q 11 + 2 q 12 ) - n ( s 11 + 2 s 12 ) ] .
( Δ N B ) / ( Δ P ) = ( t n 3 ) / λ ( q 11 - q 12 )
Δ t = ( λ / 2 ) Δ N .
α = ( 1 / t 0 ) ( d t / d T ) ,
Δ n = [ ( Δ N λ ) / ( 2 t 0 ) - n 0 ( Δ t ) / ( t 0 ) ] [ 1 + ( Δ t ) / ( t 0 ) ] - 1 ,
( n 2 - 1 ) / ( n 2 + 2 ) = ( 4 π / 3 ) M β ,
ρ ( n / ρ ) L - L = ( n 2 - 1 ) ( n 2 + 2 ) 6 n .
ρ ( n / ρ ) exp = ( 1 - Λ 0 ) ρ ( n / ρ ) L - L ,
( d n / d T ) = - 3 α p ( n / ρ ) T + ( n / T ) ρ ,

Metrics