Abstract

The absorption by the γ-0 band of nitric oxide at 2260 Å has been studied. Its apparent absorption cross section depends both on total pressure and its concentration. In order to investigate these absorption characteristics quantitatively, a line by line analysis was made. Good agreement was obtained between the experimental and computed results of the absorption cross section.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
    [Crossref]
  2. K. Watanabe, M. Zelikoff, E. C. Y. Inn, AFCRC Technical Report 53-23 (Air Force Cambridge Research Center, Cambridge, Mass., 1953).
  3. G. Hertzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
  4. E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964), p. 35.
  5. V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
    [Crossref]
  6. G. W. Bethke, J. Chem. Phys. 31, 662 (1959).
    [Crossref]

1975 (1)

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

1972 (1)

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

1959 (1)

G. W. Bethke, J. Chem. Phys. 31, 662 (1959).
[Crossref]

Anketell, J.

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

Bethke, G. W.

G. W. Bethke, J. Chem. Phys. 31, 662 (1959).
[Crossref]

Farmer, A. J. D.

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

Hasson, V.

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

Hertzberg, G.

G. Hertzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

Inn, E. C. Y.

K. Watanabe, M. Zelikoff, E. C. Y. Inn, AFCRC Technical Report 53-23 (Air Force Cambridge Research Center, Cambridge, Mass., 1953).

Ito, K.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Kikuchi, M.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

McDaniel, E. W.

E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964), p. 35.

Murakami, Y.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Nicholls, R. W.

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

Saheki, T.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Taniguchi, I.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Unosawa, Y.

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Watanabe, K.

K. Watanabe, M. Zelikoff, E. C. Y. Inn, AFCRC Technical Report 53-23 (Air Force Cambridge Research Center, Cambridge, Mass., 1953).

Zelikoff, M.

K. Watanabe, M. Zelikoff, E. C. Y. Inn, AFCRC Technical Report 53-23 (Air Force Cambridge Research Center, Cambridge, Mass., 1953).

J. Chem. Phys. (1)

G. W. Bethke, J. Chem. Phys. 31, 662 (1959).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Ito, T. Saheki, Y. Murakami, I. Taniguchi, M. Kikuchi, Y. Unosawa, Jpn. J. Appl. Phys. 14, Suppl 14-1, 131 (1975).
[Crossref]

Phys J. B (1)

V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Anketell, Phys J. B, 51248 (1972).
[Crossref]

Other (3)

K. Watanabe, M. Zelikoff, E. C. Y. Inn, AFCRC Technical Report 53-23 (Air Force Cambridge Research Center, Cambridge, Mass., 1953).

G. Hertzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964), p. 35.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement used for the absorption cross section measurements of the NO γ–0 band.

Fig. 2
Fig. 2

Absorption cross section of the NO γ–0 band vs transmittance at 300 K and 760 Torr. Symbols give experimental data points; solid curves represent the computed results: (a) poo 0.28 D, 1/πT2 = 24 GHz; (b) poo = 0.20 D, 1/πT2 = 24 GHz; (c) poo = 0.20 D, 1/πT2 = 12 GHz; (d) poo = 0.20 D, 1/πT2 = 6 GHz.

Fig. 3
Fig. 3

Absorption spectrum of NO for two different pressures. Wavenumber is scaled relative to 44,215 cm−1 which is the center wavenumber of the spectrometer.

Fig. 4
Fig. 4

Absorption cross section of the NO γ–0 band vs concentration at 300 K for various total pressures. Symbols give experimental data points; solid curves represent the computed results.

Fig. 5
Fig. 5

Absorption cross section of the NO γ–0band vs total pressure at 300 K for various concentrations. Symbols give experimental data points; solid curves represent the computed results.

Fig. 6
Fig. 6

Absorption cross section of the NO γ–0 band vs total pressure at 300 K for various densites. The values of the absorption cross section are normalized by Σo which is the absorption cross section of pure NO gas without N2 at each density. Symbols give experimental data points; solid curves represent the computed results.

Fig. 7
Fig. 7

Absorption cross section of the NO γ–0 band vs wavelength (vacuum). Σλ represents the absorption cross section at the center wavelenth of 2262 Å (vacuum). Symbols give experimental data points; the solid curve represents the computed result.

Fig. 8
Fig. 8

Absorption cross section of the NO γ–0 band at 2262 Å vs the bandwidth of the spectrometer. Σm represents the absorption cross section for the bandwidth of 8 Å. Symbols give experimental data points; the solid curve represents the computed result.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T = I o ( ω ) I i ( ω ) = exp ( N o Σ 1 ) ,
T = I i ( ω ) exp [ k ( ω ) 1 ] d ω / I i ( ω ) d ω
k ( ω ) = X Y J k ( ω ; X , Y , J ) ,
k ( ω ; X , Y , J ) = N ( X , J ) σ ( ω ; Y , J ) .
N ( Π 2 1 / 2 , J ) = N o Q r ( 2 J + 1 ) exp [ B o J ( J + 1 ) h c / k T ] ,
N ( Π 2 3 / 2 , J ) = N o Q r ( 2 J + 1 ) exp [ { ( ν 01 ν 02 ) + B o J ( J + 1 ) h c / k T } ] .
Q r = k T h c B o { 1 + exp [ ( ν 01 ν 02 ) h c / k T ] } .
σ ( ω ; Y , J ) = 2 π 2 ω o 3 o h c i k | R n i m k | 2 2 ( 2 J + 1 ) Z i ( ω ω o + i / T 2 k o u ) π k o u ,
Z i ( x + i y ) = y π exp ( t 2 ) ( t x ) 2 + y 2 d t .
i k | R n i m k | 2 = p o o S J Y ,
S J P = ( J + 1 ) / 4 for P branch ,
S J Q = ( 2 J + 1 ) / 4 for Q branch ,
S J R = J / 4 for R branch ,
ω o / 2 π c = ν o j + ( B o + B o ) 1 + ( B o B o ) 1 2 ( j = 1 , 2 ) : 1 = J ( J = 1 , 2 , 3 , . . . ) for P branch : 1 = J + 1 ( J = 0 , 1 , 2 , . . . ) for R branch ,
ω o / 2 π c = ν o j + ( B o B o ) J + ( B o B o ) J 2 ( j = 1 , 2 ) ( J = 0 , 1 , 2 , . . . ) for Q branch ,
k ( ω ) = p o o N o X Y J D ( X , Y , J ) Z i ( ω ω o + i / T 2 k o u ) ,
D ( X , Y , J ) = 2 ω c B o 3 o k T u S J Y { exp [ B o J ( J + 1 ) h c / k T ] 1 + exp [ ( ν 01 ν 02 ) h c / k T ] for Π 2 1 / 2 exp [ B o J ( J + 1 ) h c / k T ] 1 + exp [ ( ν 01 ν 02 ) h c / k t ] for Π 2 3 / 2 .
I i ( ω ) sin 2 ( π ω ω c 1.129 Δ ω ) / ( π ω ω c 1.129 Δ ω ) 2
1 / ( 2 π T 2 ) = u / λ .
λ = [ ( P T ) / ( P T ) ] λ .
p o o = I i ( ω ) d ω I i ( ω ) X Y Z D ( X , Y , Z ) Z i ( ω ω c i / T 2 k o u ) d ω .
Σ = p o o { [ ln T ( x ) ] / x } ,

Metrics