Abstract

A new optical switch element is proposed for a switching system which exchanges optical signals in optical transmission lines without optoelectric conversion. It consists of three parallel equidistant straight single-mode waveguides fabricated of an electrooptic material with electrodes deposited on them. The element, whose interaction length is π/(2)1/2k (k is the coupling coefficient of neighboring guides), serves as a 3 × 3 optical switch by control of the differences in propagation constants between those waveguides. Control conditions to realize all the six connecting states of a 3 × 3 switch are discussed with the solution of the coupling equation for those guides.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Veněs, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).
  2. K. Takagi, Electron. Commun. Jpn. 51A, 153 (1968).
  3. S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).
  4. H. F. Taylor, J. Appl. Phys. 44, 3257 (1973).
    [CrossRef]
  5. H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
    [CrossRef]
  6. R. A. Steinberg, T. G. Giallorenzi, IEEE J. Quantum Electron. QE-13, 122 (1977).
    [CrossRef]
  7. M. Papuchon et al., Appl. Phys. Lett. 27, 289 (1975).
    [CrossRef]
  8. J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
    [CrossRef]
  9. R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
    [CrossRef]
  10. H. F. Taylor, Electron. Lett. 10, 41 (1974).
    [CrossRef]
  11. R. A. Soref, L. R. Schissler, “Optical Switch Study,” RADC Report TR-75-3 (Griffiss Air Force Base, New York, 1975).
  12. R. V. Schmidt, L. L. Buhl, Electron. Lett. 12, 575 (1976).
    [CrossRef]
  13. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

1977 (1)

R. A. Steinberg, T. G. Giallorenzi, IEEE J. Quantum Electron. QE-13, 122 (1977).
[CrossRef]

1976 (3)

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

R. V. Schmidt, L. L. Buhl, Electron. Lett. 12, 575 (1976).
[CrossRef]

1975 (2)

M. Papuchon et al., Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

1974 (1)

H. F. Taylor, Electron. Lett. 10, 41 (1974).
[CrossRef]

1973 (1)

H. F. Taylor, J. Appl. Phys. 44, 3257 (1973).
[CrossRef]

1972 (1)

S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).

1969 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

1968 (1)

K. Takagi, Electron. Commun. Jpn. 51A, 153 (1968).

Blum, F. A.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Buhl, L. L.

R. V. Schmidt, L. L. Buhl, Electron. Lett. 12, 575 (1976).
[CrossRef]

Campbell, J. C.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Giallorenzi, T. G.

R. A. Steinberg, T. G. Giallorenzi, IEEE J. Quantum Electron. QE-13, 122 (1977).
[CrossRef]

Iwasaki, K.

S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).

Kogelnik, H.

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

Kumagai, N.

S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).

Kurazono, S.

S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).

Lawley, K. L.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Papuchon, M.

M. Papuchon et al., Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Schissler, L. R.

R. A. Soref, L. R. Schissler, “Optical Switch Study,” RADC Report TR-75-3 (Griffiss Air Force Base, New York, 1975).

Schmidt, R. V.

R. V. Schmidt, L. L. Buhl, Electron. Lett. 12, 575 (1976).
[CrossRef]

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

Shaw, D. W.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Soref, R. A.

R. A. Soref, L. R. Schissler, “Optical Switch Study,” RADC Report TR-75-3 (Griffiss Air Force Base, New York, 1975).

Steinberg, R. A.

R. A. Steinberg, T. G. Giallorenzi, IEEE J. Quantum Electron. QE-13, 122 (1977).
[CrossRef]

Takagi, K.

K. Takagi, Electron. Commun. Jpn. 51A, 153 (1968).

Taylor, H. F.

H. F. Taylor, Electron. Lett. 10, 41 (1974).
[CrossRef]

H. F. Taylor, J. Appl. Phys. 44, 3257 (1973).
[CrossRef]

Venes, V. E.

V. E. Veněs, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

Appl. Phys. Lett. (3)

M. Papuchon et al., Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Electron. Commun. Jpn. (2)

K. Takagi, Electron. Commun. Jpn. 51A, 153 (1968).

S. Kurazono, K. Iwasaki, N. Kumagai, Electron. Commun. Jpn. 55C, 103 (1972).

Electron. Lett. (2)

H. F. Taylor, Electron. Lett. 10, 41 (1974).
[CrossRef]

R. V. Schmidt, L. L. Buhl, Electron. Lett. 12, 575 (1976).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[CrossRef]

R. A. Steinberg, T. G. Giallorenzi, IEEE J. Quantum Electron. QE-13, 122 (1977).
[CrossRef]

J. Appl. Phys. (1)

H. F. Taylor, J. Appl. Phys. 44, 3257 (1973).
[CrossRef]

Other (2)

R. A. Soref, L. R. Schissler, “Optical Switch Study,” RADC Report TR-75-3 (Griffiss Air Force Base, New York, 1975).

V. E. Veněs, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Example of a multistage linked switch network.

Fig. 2
Fig. 2

Example of large size switches made of 2 × 2 switch elements: (a) 3 × 3; (b) 4 × 4.

Fig. 3
Fig. 3

3 × 3 switch element plan.

Fig. 4
Fig. 4

3 × 3 switch connecting states.

Fig. 5
Fig. 5

Distribution of propagation constants to obtain complete interchange in a two-guide system. β0 is arbitrary.

Fig. 6
Fig. 6

Distribution of propagation constants to obtain state 3. β0 is arbitrary.

Fig. 7
Fig. 7

Averaged crosstalk attenuation ratio for state 3 at x = y ≜ ±b.

Fig. 8
Fig. 8

Averaged crosstalk attenuation ratio for state 3 at −x = yb.

Fig. 9
Fig. 9

Averaged crosstalk attenuation ratio for state 3 at x = −yb.

Fig. 10
Fig. 10

Light power distribution for state 3: (a) guide 1 is driven; (b) guide 2 is driven; (c) guide 3 is driven.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d dz ( A 1 ( z ) A 2 ( z ) A 3 ( z ) ) = i ( β 1 k 0 k β 2 k 0 k β 3 ) ( A 1 ( z ) A 2 ( z ) A 3 ( z ) ) ,
A ( z ) = exp ( i β 1 z ) Φ ( z ) A ( 0 ) ,
Φ ( Z ) = ( φ 1 φ 2 φ 3 φ 2 φ 4 φ 2 * φ 3 φ 2 * φ 1 ) , φ 1 = [ 1 + ( α 2 1 ) cos ( α kz ) i α ( β 1 β 2 ) sin ( α kz ) / k ] / α 2 , φ 2 = [ ( β 1 β 2 ) ( β 1 β 2 ) cos ( α kz ) + i α k sin ( α kz ) ] / α 2 k , φ 3 = [ cos ( α kz ) 1 ] / α 2 , φ 4 = [ ( β 1 β 2 ) 2 + 2 k 2 cos ( α kz ) ] / α 2 k 2 , α = [ 2 k 2 + ( β 1 β 2 ) 2 ] 1 / 2 / k .
Φ [ π / ( 2 ) 1 / 2 k ] = ( 0 0 1 0 1 0 1 0 0 ) ,
Φ [ π / ( 2 ) 1 / 2 k ] = ( 1 0 0 0 1 0 0 0 1 ) ,
( 8 k 2 / 4 k 2 + γ 2 ) sin 2 [ L ( 4 k 2 + γ 2 ) 1 / 2 / 4 ] = 1 .
γ = 2 k .
ACA = 10 log [ 1 3 i = 1 3 ( total light power at unwanted output ports when guide i is driven with unit light power . ) ] .

Metrics