Abstract

Spectral narrowing in pulsed dye lasers is studied theoretically. Fabry-Perot etalons, gratings and prisms are considered as tuning elements. Each one is characterized by a new parameter: the spectral width associated with a round trip in the laser cavity. Numerical examples show that depending on cavity Parameters it is either the round-trip spectral width or the width due to beam divergence which limits the bandwidth of the laser emission. Instantaneous spectral narrowing is found to be proportional to the square root of the time elapsed after the laser onset when a Fabry-Perot etalon or grating is used. When a prism is set in the laser cavity the instantaneous narrowing is proportional to time.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
    [CrossRef]
  2. D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
    [CrossRef]
  3. G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
    [CrossRef]
  4. T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
    [CrossRef]
  5. R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).
  6. F. P. Schäfer, Dye Lasers (Springer-Verlag, New-York, 1973).
    [CrossRef]
  7. G. Marowsky, Opt. Acta 23, 855 (1976).
    [CrossRef]
  8. G. Bruhat, Optique, 6ième èd. (Masson, Paris, 1965).
  9. P. Flamant, Y. H. Meyer, Opt. Commun. 13, 13 (1975);Y. H. Meyer, P. Flamant, C. R. Acad. Sci. Paris Ser. B 282, 403 (1976).
    [CrossRef]
  10. Y. H. Meyer, P. Flamant, Opt. Commun. 19, 20 (1976).
    [CrossRef]
  11. P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
    [CrossRef]

1977 (1)

P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
[CrossRef]

1976 (2)

Y. H. Meyer, P. Flamant, Opt. Commun. 19, 20 (1976).
[CrossRef]

G. Marowsky, Opt. Acta 23, 855 (1976).
[CrossRef]

1975 (1)

P. Flamant, Y. H. Meyer, Opt. Commun. 13, 13 (1975);Y. H. Meyer, P. Flamant, C. R. Acad. Sci. Paris Ser. B 282, 403 (1976).
[CrossRef]

1972 (1)

T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
[CrossRef]

1968 (2)

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

1967 (1)

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Abartsumyan, R. V.

R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).

Basov, N. G.

R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).

Bradley, D. J.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

Bruhat, G.

G. Bruhat, Optique, 6ième èd. (Masson, Paris, 1965).

Flamant, P.

P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
[CrossRef]

Y. H. Meyer, P. Flamant, Opt. Commun. 19, 20 (1976).
[CrossRef]

P. Flamant, Y. H. Meyer, Opt. Commun. 13, 13 (1975);Y. H. Meyer, P. Flamant, C. R. Acad. Sci. Paris Ser. B 282, 403 (1976).
[CrossRef]

Gale, G. M.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

Hansch, T. W.

T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
[CrossRef]

Juramy, P.

P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
[CrossRef]

Kryukov, P. G.

R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).

Letokhov, V. S.

R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).

Marowsky, G.

G. Marowsky, Opt. Acta 23, 855 (1976).
[CrossRef]

McFarland, B. B.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Meyer, Y. H.

P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
[CrossRef]

Y. H. Meyer, P. Flamant, Opt. Commun. 19, 20 (1976).
[CrossRef]

P. Flamant, Y. H. Meyer, Opt. Commun. 13, 13 (1975);Y. H. Meyer, P. Flamant, C. R. Acad. Sci. Paris Ser. B 282, 403 (1976).
[CrossRef]

Moore, M.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

Murakawa, S.

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Schäfer, F. P.

F. P. Schäfer, Dye Lasers (Springer-Verlag, New-York, 1973).
[CrossRef]

Schawlow, A. L.

T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
[CrossRef]

Smith, P. D.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Tanaka, H.

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Toschek, P.

T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
[CrossRef]

Yamaguchi, G.

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Yamanaka, C.

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Appl. Phys. Lett. (1)

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

IEEE J. Quant. Electron. (1)

P. Juramy, P. Flamant, Y. H. Meyer, IEEE J. Quant. Electron. 13, 855 (1977) (à paraître octobre).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. W. Hansch, A. L. Schawlow, P. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).
[CrossRef]

Jpn. J. Appl. Phys. (1)

G. Yamaguchi, S. Murakawa, H. Tanaka, C. Yamanaka, Jpn. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Opt. Acta (1)

G. Marowsky, Opt. Acta 23, 855 (1976).
[CrossRef]

Opt. Commun. (2)

P. Flamant, Y. H. Meyer, Opt. Commun. 13, 13 (1975);Y. H. Meyer, P. Flamant, C. R. Acad. Sci. Paris Ser. B 282, 403 (1976).
[CrossRef]

Y. H. Meyer, P. Flamant, Opt. Commun. 19, 20 (1976).
[CrossRef]

Phys. Lett. (1)

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26, 378 (1968).
[CrossRef]

Other (3)

R. V. Abartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, “Non-Resonant Feedback in Lasers,” in Progress in Quantum Electronics, Vol. 1 (Pergamon, New-York, 1971).

F. P. Schäfer, Dye Lasers (Springer-Verlag, New-York, 1973).
[CrossRef]

G. Bruhat, Optique, 6ième èd. (Masson, Paris, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Tableau I Comparalson de δλ0 et δλα pour les differents selecteurs spectraux

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

T ( ν ) = [ 1 + m sin 2 φ ( ν ) 2 ] 1 ,
φ ( ν ) 2 = k 0 π ( 1 + ν ν 0 ν 0 ) ,
sin φ ( ν ) 2 = ± sin k 0 π ν ν 0 ν 0 ± k 0 π ν ν 0 ν 0 .
T ( ν ) = [ 1 + ( 2 ν ν 0 δ ν ) 2 ] 1 .
| ν h ν 0 | = δ ν 2 ( 2 1 / 2 1 ) 1 / 2 .
δ ν 0 = ( 2 1 / 2 1 ) 1 / 2 δ ν 0.64 δ ν
R ( ν ) = sin 2 { N [ φ ( ν ) / 2 ] } sin 2 [ φ ( ν ) / 2 ] ,
N φ ( ν ) 2 = 4 π N a ν 0 sin i c ( 1 + ν ν 0 ν 0 ) .
R ( ν ) = cos 2 [ 4 π N a sin i c ( ν ν 0 ) ] .
R ( ν ) 1 [ 4 π N a sin i c ( ν ν 0 ) ] 2 .
δ ν 0 = 2 3 / 2 c π N a sin i 0.11 c N a sin i .
δ ν 0 0.11 ( c / d ) .
T ( x 0 ) = 2 π { arccos x 0 d x 0 d [ 1 ( x 0 d ) 2 ] 1 / 2 } ,
T ( x 0 ) 1 4 x 0 π d + 2 3 π ( x 0 d ) 3 + . . . .
T ( ν ) 1 8 L π d | ν ν 0 | d D d ν .
d D d ν = d D d n d n d ν ,
d D d n = sin A cos r sin i .
δ ν 0 = π 8 d L ( d D / d ν ) .
I ν i ( t ) = I ν j ( t ) δ i j e t / τ i j .
τ i j = T [ l n f ( ν i ) f ( ν j ) ] 1 ,
f ( ν ) = f ( ν 0 ) + ( ν ν 0 ) f ( ν 0 ) + ( ν ν 0 ) 2 2 f ( ν 0 ) + . . .
I ν ( t ) = I ν 0 ( t ) × [ 1 + ( ν ν 0 ) f ( ν 0 ) f ( ν 0 ) + ( ν ν 0 ) 2 2 f ( ν 0 ) f ( ν 0 ) ] t / T .
1 2 = [ 1 + ( ν h ν 0 ) 2 2 f ( ν 0 ) f ( ν 0 ) ] t / T .
δ ν ( t ) = 2 [ 2 f ( ν 0 ) f ( ν 0 ) ] 1 / 2 [ 1 2 ( T / t ) ] 1 / 2 ;
δ ν ( T ) = 2 [ f ( ν 0 ) f ( ν 0 ) ] 1 / 2 .
δ ν ( t ) = δ ν 0 [ 2 ( 1 2 T / t ) ] 1 / 2 .
δ ν 0 δ ν ( t ) ( 2 ln 2 ) 1 / 2 ( t T ) 1 / 2 .
δ ν ( t ) = δ ν 0 [ 2 ( 1 2 T / t ) ]
δ ν 0 δ ν ( t ) ( 2 ln 2 ) 1 t T .
δ ν p ( t ) = 0 | ν ν 0 | I ν ( t ) d ν 0 I ν ( t ) d ν ,
δ ν p = 0 θ d t δ ν p ( t ) I ( t ) 0 θ dtI ( t ) ,
I ν ( t ) I ν 0 ( t ) = exp [ t T ( ν ν 0 ) 2 2 f ( ν 0 ) f ( ν 0 ) ] .
δ ν = 0 θ d t δ ν ( t ) I ( t ) 0 θ dtI ( t ) .
δ ν = δ ν ( θ ) 8 3 n 1 / 2 1 + n 1 / 2 .
δ ν = δ ν ( θ ) 2 n n 1 ln ( n ) .
0.64 Δ λ F
0.11 λ 0 d
π d 4 L sin A cos r sin i d n d λ
2 a cos i p Δ α
Δ α 8 ( d n / d λ )

Metrics