Abstract

Experimental performance of several different unstable resonators with annual cylindrical mode volumes is reported. Laser output beam quality and its sensitivity to resonator component misalignments and figure errors are described. Near diffraction-limited beam quality was obtained from an annular cylindrical He–Xe laser employing a half-symmetric unstable resonator with an intracavity axicon.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Chodzko, S. B. Mason, E. F. Cross, Appl. Opt. 15, 2137 (1976).
    [CrossRef] [PubMed]
  2. L. W. Casperson, M. Shabbin Shekhani, Appl. Opt. 14, 2653 (1975).
    [CrossRef] [PubMed]
  3. R. J. Freiberg, D. W. Fradin, P. O. Chanausky, Appl. Opt. 16, 1192 (1977).
    [CrossRef] [PubMed]
  4. A. E. Siegman, Laser Focus 7, No. 5, 42 (1971).
  5. H. W. Furumoto, H. L. Ceccon, Appl. Opt. 8, 1613 (1969).
    [CrossRef] [PubMed]
  6. C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
    [CrossRef]
  7. R. A. Paananen, D. L. Bobroff, Appl. Phys. Lett. 2, 99 (1963).
    [CrossRef]
  8. J. W. Kluver, J. Appl. Phys. 37, 2987 (1966).
    [CrossRef]
  9. D. Stoler, Perkin-Elmer Corp., private communication.

1977 (1)

1976 (1)

1975 (1)

1971 (1)

A. E. Siegman, Laser Focus 7, No. 5, 42 (1971).

1969 (1)

1966 (1)

J. W. Kluver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

1963 (1)

R. A. Paananen, D. L. Bobroff, Appl. Phys. Lett. 2, 99 (1963).
[CrossRef]

1962 (1)

C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
[CrossRef]

Bobroff, D. L.

R. A. Paananen, D. L. Bobroff, Appl. Phys. Lett. 2, 99 (1963).
[CrossRef]

Casperson, L. W.

Ceccon, H. L.

Chanausky, P. O.

Chodzko, R. A.

Cross, E. F.

Fradin, D. W.

Freiberg, R. J.

Fuast, W. L.

C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
[CrossRef]

Furumoto, H. W.

Kluver, J. W.

J. W. Kluver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

Mason, S. B.

McFarlane, R. A.

C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
[CrossRef]

Paananen, R. A.

R. A. Paananen, D. L. Bobroff, Appl. Phys. Lett. 2, 99 (1963).
[CrossRef]

Patel, C. K. N.

C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
[CrossRef]

Shabbin Shekhani, M.

Siegman, A. E.

A. E. Siegman, Laser Focus 7, No. 5, 42 (1971).

Stoler, D.

D. Stoler, Perkin-Elmer Corp., private communication.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

C. K. N. Patel, W. L. Fuast, R. A. McFarlane, Appl. Phys. Lett. 1, 84 (1962).
[CrossRef]

R. A. Paananen, D. L. Bobroff, Appl. Phys. Lett. 2, 99 (1963).
[CrossRef]

J. Appl. Phys. (1)

J. W. Kluver, J. Appl. Phys. 37, 2987 (1966).
[CrossRef]

Laser Focus (1)

A. E. Siegman, Laser Focus 7, No. 5, 42 (1971).

Other (1)

D. Stoler, Perkin-Elmer Corp., private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Resonator concepts: (a) converging wave unstable resonator and (b) half-symmetric unstable resonator with intracavity axicon.

Fig. 2
Fig. 2

Annular resonator elements: (a) axicon or W-axicon with 90° right circular cones and (b) confocal parabolic toroids (parabolic surfaces or revolution).

Fig. 3
Fig. 3

Phase discontinuity in axicon transmitted wavefront due to tilt θ.

Fig. 4
Fig. 4

Assembled dye-laser head.

Fig. 5
Fig. 5

Dye-laser head assembly, dimensions in millimeters: A— fitting adapter; B—retainer; C—dye inlet; D—O-ring seal; E—inner sleeve quartz; F—outer sleeve; G—dye outlet; H—window (fixed); I—bushing insulator; J—main housing; K—retainer; L—window (adjustable); M—tilt adj. screw (3); N—O-ring seal.

Fig. 6
Fig. 6

Spherical mirror resonator: A—concave reflector sphere, M2 radius of curvature = 400 mm; B—scraper; C—window; D—flat annular reflector; E—window; F—window; G—convex reflector sphere, M1 radius of curvature = 200 mm.

Fig. 7
Fig. 7

Converging wave dye-laser resonator arrangement.

Fig. 8
Fig. 8

Near and far-field test arrangement: A—far-field pattern; B—near-field pattern; C—pattern transmitted through concave end mirror.

Fig. 9
Fig. 9

Intensity distributions of converging wave resonator laser output.

Fig. 10
Fig. 10

Intensity distribution of beam transmitted through concave laser end mirror.

Fig. 11
Fig. 11

Some high-order azimuthal modes observed for different spherical mirror separations.

Fig. 12
Fig. 12

Gain measurements across the annular gap.

Fig. 13
Fig. 13

Gain of the He–Xe laser as a function of rf driving power.

Fig. 14
Fig. 14

Annular, cw, He–Xe laser, gain cell.

Fig. 15
Fig. 15

He–Xe laser HSURIA; A—reflective sphere; B—scraper; C—annular mirror; D—He–Xe laser head; E—axicon head; F— annular fold mirror.

Fig. 16
Fig. 16

Near and far field patterns from half symmetric unstable resonator.

Fig. 17
Fig. 17

Experimental measurement of the beam quality of a He–Xe laser operating in an HSURIA/CP resonator.

Fig. 18
Fig. 18

Effect of small cavity misalignment.

Fig. 19
Fig. 19

Photographs of He–Xe data for HLD and LLD configurations: (a) LLD near-field 1M; (b) HLD near-field 1M; (c) = LLD, far-field; (d) HLD far-field.

Tables (2)

Tables Icon

Table I Dye-Laser Converging Wave Resonator Dimensions

Tables Icon

Table II HSURIA/CP Configurations Tested for Mode Selectivity

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N eq = a 2 2 L λ M 2 1 2 M ,
δ λ n λ n φ 2 n ( r , θ ) δ T T ( r , θ ) r d r d θ φ 2 n r d r d θ ,

Metrics