Abstract

Coherent optical processing methods have been investigated for the real-time recognition and control of mass-produced pieces in automatic machining and assembling lines. In particular, an optical correlator is proposed in which the information of a master piece is stored in a hologram. Problems such as the optimization and generation of the hologram, the detection of particular defects, the adaptation of the response curve to the practically given tolerances, and the reliability have been investigated, and prototypes of control systems have been realized.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. van der Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964);Proc. IEEE 54, 1055 (1966);Appl. Opt. 5, 1760 (1966).
    [CrossRef] [PubMed]
  2. F. J. Tischler, “Effects of Geometric Deviations and Non-Linearities in Coherent Optical Data Processors,” NASA Report NGR-34-002-038/51 (1968).
  3. N. Douklias, J. Shamir, Appl. Opt. 12, 364 (1973);N. Broussaeu, H. H. Arsenault, Appl. Opt. 14, 1679 (1975).
    [CrossRef] [PubMed]
  4. G. Indebetouw, T. Tschudi, G. Herziger, Appl. Opt. 15, 516 (1976).
    [CrossRef] [PubMed]
  5. A. Engel, Appl. Opt. 12, 743 (1973).
    [CrossRef] [PubMed]
  6. B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966);A. W. Lohmann, D. P. Paris, Appl. Opt. 6, 1739 (1967);Appl. Opt. 7, 651 (1968);A. Engel, G. Herziger, Appl. Opt. 12, 471 (1973).
    [CrossRef] [PubMed]
  7. T. Tschudi, A. Engel, G. Herziger, Appl. Opt. 13, 245 (1974).
    [CrossRef] [PubMed]
  8. G. Indebetouw, T. Tschudi, G. Herziger, SPIE Proc. “Image Processing” 74, 78 (1976).
    [CrossRef]
  9. K. C. Chuang, Mater. Eval. 26, 116 (1968);E. Marom, Appl. Opt. 9, 1385 (1970).
    [CrossRef] [PubMed]
  10. K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
    [CrossRef]
  11. R. Hickling, J. Opt. Soc. Am. 58, 455 (1968);T. Tschudi, A. Engel, G. Herziger, Appl. Opt. 13, 245 (1974).
    [CrossRef] [PubMed]

1976 (3)

G. Indebetouw, T. Tschudi, G. Herziger, Appl. Opt. 15, 516 (1976).
[CrossRef] [PubMed]

G. Indebetouw, T. Tschudi, G. Herziger, SPIE Proc. “Image Processing” 74, 78 (1976).
[CrossRef]

K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
[CrossRef]

1974 (1)

1973 (2)

1968 (2)

1966 (1)

1964 (1)

A. van der Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964);Proc. IEEE 54, 1055 (1966);Appl. Opt. 5, 1760 (1966).
[CrossRef] [PubMed]

Brown, B. R.

Chuang, K. C.

K. C. Chuang, Mater. Eval. 26, 116 (1968);E. Marom, Appl. Opt. 9, 1385 (1970).
[CrossRef] [PubMed]

Dorenwendt, K.

K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
[CrossRef]

Douklias, N.

Engel, A.

Herziger, G.

Hickling, R.

Indebetouw, G.

G. Indebetouw, T. Tschudi, G. Herziger, SPIE Proc. “Image Processing” 74, 78 (1976).
[CrossRef]

G. Indebetouw, T. Tschudi, G. Herziger, Appl. Opt. 15, 516 (1976).
[CrossRef] [PubMed]

Kunzmann, H.

K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
[CrossRef]

Lerch, J.

K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
[CrossRef]

Lohmann, A. W.

Shamir, J.

Tischler, F. J.

F. J. Tischler, “Effects of Geometric Deviations and Non-Linearities in Coherent Optical Data Processors,” NASA Report NGR-34-002-038/51 (1968).

Tschudi, T.

van der Lugt, A.

A. van der Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964);Proc. IEEE 54, 1055 (1966);Appl. Opt. 5, 1760 (1966).
[CrossRef] [PubMed]

Appl. Opt. (5)

Feinwerk/Messtechnik 84 (1)

K. Dorenwendt, H. Kunzmann, J. Lerch, Feinwerk/Messtechnik 84, No. 2, 88 (1976);G. Indebetouw, Rev. Sci. Instrum. 48, 547 (1977).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. van der Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964);Proc. IEEE 54, 1055 (1966);Appl. Opt. 5, 1760 (1966).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Mater. Eval. (1)

K. C. Chuang, Mater. Eval. 26, 116 (1968);E. Marom, Appl. Opt. 9, 1385 (1970).
[CrossRef] [PubMed]

SPIE Proc. (1)

G. Indebetouw, T. Tschudi, G. Herziger, SPIE Proc. “Image Processing” 74, 78 (1976).
[CrossRef]

Other (1)

F. J. Tischler, “Effects of Geometric Deviations and Non-Linearities in Coherent Optical Data Processors,” NASA Report NGR-34-002-038/51 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Control and recognition system in an automatic piece production and assembly line. The piece production is supervised, and the piece position is detected to grip and handle the pieces correctly.

Fig. 2
Fig. 2

Coherent optical correlator (type A) used for piece control in transmission. Dotted reference beam path used to take hologram of a master piece.

Fig. 3
Fig. 3

Coherent optical correlator (type B) with beam deflector used if pieces cannot be positioned accurately.

Fig. 4
Fig. 4

Coherent optical correlator (type C) with image rotator used if pieces cannot be orientated accurately.

Fig. 5
Fig. 5

Signal of the correlator vs piece position x of a rectangular piece (a) without and (b) with beam deflection.

Fig. 6
Fig. 6

Adaptation of the response curve to the required tolerances by varying the spectral bandwidth.

Fig. 7
Fig. 7

Coherent optical correlator (type D) with beam partition and beam deflector/rotator used to control several individual features of the piece separately; eight-channel hologram.

Fig. 8
Fig. 8

Photographically recorded hologram of a piece with three holes and relative correlation signal (Δs)/s vs deviation of position of central hole.

Fig. 9
Fig. 9

Synthetically generated hologram of the piece with three holes and relative correlation signal (Δs)/s vs deviation of position of central hole.

Fig. 10
Fig. 10

Three synthetic holograms of a piece with a circular hole (ϕ = 1 mm) with a phase shift to obtain different types of response curves.

Fig. 11
Fig. 11

Typical values of control rate (continuous pieces supply) and of control duration (stepwise piece supply) for the four types of correlators mentioned. Piece dimension ≃ 5 mm; piece tolerance ≃ 5 μm.

Fig. 12
Fig. 12

Systems description of screw testing equipment with one filter FI in the image plane and another FS in the spectral plane. The signals S1 and S2 from the detectors D1 and D2 are analyzed to evaluate the screw quality.

Fig. 13
Fig. 13

Characteristics of a screw and its spectrum.

Fig. 14
Fig. 14

Systems description of a particle size analyzer using six synthetic holograms F1, F2 (in reflection) and F3F6 (in transmission) adapted to particle sizes of 1, 2, 3, 4, 6, and 8 μm. The laser beam is concentrated with a cylindrical Fresnel lens (FZP) on the three tubes wherein the particles flow at a speed of ∼1 cm/sec.

Fig. 15
Fig. 15

Response curve of the synthetic hologram of the 1-μm size particle for three apertures of the correlation optics.

Metrics