Abstract

An experimental program aimed at measuring critical channel parameters of atmospheric optical communication channels under low-visibility weather conditions is described. Multipath and angular spectrum measurements made under a variety of weather conditions over a 13.6-km line-of-sight propagation path are reported. The latter measurements are used to examine the dependence of scattered plus unscattered optical transmission on optical thickness.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Heggestad, “Optical Communication through Multiple-Scattering Media,” Research Laboratory for Electronics, MIT, Cambridge, Tech. Rep. 472 (1968).
  2. R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
    [CrossRef]
  3. R. S. Kennedy, “Low-Visibility Short-Haul Communication in the Atmosphere,” in Report of the NSF Grantee-User Semi-Annual Meeting on Optical Communications, Boulder, Colo. (29, 30 May 1974).
  4. S. R. Robinson, “Spatial Phase Compensation Receivers for Optical Communication,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).
  5. R. Price, P. E. Green, Proc. IRE 46, 555 (1958).
    [CrossRef]
  6. R. S. Kennedy, Fading Dispersive Communication Channels (Wiley, New York, 1969).
  7. M. S. Perlmutter, “Optimization of Multiply Sensitized Ho3+: YLF as a Laser Material,” S. M. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).
  8. R. E. Simon, ed., RCA Electro-Optics Handbook, Technical Series EOH-11 (1974), Chap. 7.
  9. E. A. Bucher, Appl. Opt. 12, 2391 (1973).
    [CrossRef] [PubMed]
  10. E. A. Bucher, R. M. Lerner, Appl. Opt. 12, 2401 (1973).
    [CrossRef] [PubMed]
  11. R. S. Kennedy, J. H. Shapiro, “Multipath Dispersion in Low Visibility Optical Communication Channels,” RADC-TR-77-73 (NTIS, Springfield, Va., 1977).

1974

R. E. Simon, ed., RCA Electro-Optics Handbook, Technical Series EOH-11 (1974), Chap. 7.

1973

1970

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

1958

R. Price, P. E. Green, Proc. IRE 46, 555 (1958).
[CrossRef]

Bucher, E. A.

Green, P. E.

R. Price, P. E. Green, Proc. IRE 46, 555 (1958).
[CrossRef]

Heggestad, H. M.

H. M. Heggestad, “Optical Communication through Multiple-Scattering Media,” Research Laboratory for Electronics, MIT, Cambridge, Tech. Rep. 472 (1968).

Kennedy, R. S.

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

R. S. Kennedy, J. H. Shapiro, “Multipath Dispersion in Low Visibility Optical Communication Channels,” RADC-TR-77-73 (NTIS, Springfield, Va., 1977).

R. S. Kennedy, “Low-Visibility Short-Haul Communication in the Atmosphere,” in Report of the NSF Grantee-User Semi-Annual Meeting on Optical Communications, Boulder, Colo. (29, 30 May 1974).

R. S. Kennedy, Fading Dispersive Communication Channels (Wiley, New York, 1969).

Lerner, R. M.

Perlmutter, M. S.

M. S. Perlmutter, “Optimization of Multiply Sensitized Ho3+: YLF as a Laser Material,” S. M. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).

Price, R.

R. Price, P. E. Green, Proc. IRE 46, 555 (1958).
[CrossRef]

Robinson, S. R.

S. R. Robinson, “Spatial Phase Compensation Receivers for Optical Communication,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).

Shapiro, J. H.

R. S. Kennedy, J. H. Shapiro, “Multipath Dispersion in Low Visibility Optical Communication Channels,” RADC-TR-77-73 (NTIS, Springfield, Va., 1977).

Appl. Opt.

Proc. IEEE

R. S. Kennedy, Proc. IEEE 58, 1651 (1970).
[CrossRef]

Proc. IRE

R. Price, P. E. Green, Proc. IRE 46, 555 (1958).
[CrossRef]

RCA Electro-Optics Handbook

R. E. Simon, ed., RCA Electro-Optics Handbook, Technical Series EOH-11 (1974), Chap. 7.

Other

R. S. Kennedy, J. H. Shapiro, “Multipath Dispersion in Low Visibility Optical Communication Channels,” RADC-TR-77-73 (NTIS, Springfield, Va., 1977).

R. S. Kennedy, Fading Dispersive Communication Channels (Wiley, New York, 1969).

M. S. Perlmutter, “Optimization of Multiply Sensitized Ho3+: YLF as a Laser Material,” S. M. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).

R. S. Kennedy, “Low-Visibility Short-Haul Communication in the Atmosphere,” in Report of the NSF Grantee-User Semi-Annual Meeting on Optical Communications, Boulder, Colo. (29, 30 May 1974).

S. R. Robinson, “Spatial Phase Compensation Receivers for Optical Communication,” Ph.D. Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge (1975).

H. M. Heggestad, “Optical Communication through Multiple-Scattering Media,” Research Laboratory for Electronics, MIT, Cambridge, Tech. Rep. 472 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Profile of terrain along propagation path.

Fig. 2
Fig. 2

View from top of MIT's Earth Science Building looking across Cambridge toward test site on Prospect Hill Waltham.

Fig. 3
Fig. 3

View from Waltham test site toward MIT and downtown Boston.

Fig. 4
Fig. 4

Block diagrams of ruby and holmium links.

Fig. 5
Fig. 5

Ruby pulse characteristics: (a) clear-weather, type (i), pulse; (b) type (ii) pulse; (c) type (iii) pulse.

Fig. 6
Fig. 6

Ruby angular spectra: each filled circle is the mean of ten pulses taken 10/26/76 with 10-mile visibility in haze; each open circle is the mean of ten pulses taken 10/20/76 with 3–4-mile visibility in fog; bars show highest and lowest pulse values.

Fig. 7
Fig. 7

Holmium angular spectra: each solid line is the result of 15 sec of boxcar averaging with 4-sec effective time constant taken 8/ 26/76 with 8-mile visibility in haze; each open line is the result of 15 sec of boxcar averaging with 4-sec effective time constant taken 9/2/76 with 4–8 mile visibility in rain.

Fig. 8
Fig. 8

Ruby-link signal vs optical thickness (based on Table II).

Fig. 9
Fig. 9

Holmium-link signal vs optical thickness (based on Table III).

Tables (3)

Tables Icon

Table I Ruby Laser Multipath Observations

Tables Icon

Table II Ruby Laser Transmission Data

Tables Icon

Table III Holmium Laser Transmission Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ = 26.7 / V at 694.3 nm
τ = 16.8 / V at 2.06 μ m ,
υ = 9.08 × 10 3 exp ( 1.01 τ ) ,
υ = 2.05 × 10 1 exp ( 0.86 τ ) ,

Metrics