Abstract

A high quality nonimpact printer at a speed of 10,000 1/min is realized by a new laser scanning system and an electrophotographic process. The laser scanning system uses a parabolic mirror for correcting line scanning distortion. When a polygonal mirror facet is placed on the axis of the parabolic mirror at about two-thirds of the focal length from the mirror surface, and the focus of the parabolic mirror is on a photosensitive drum surface. The scanning velocity distortion is reduced to less than 0.1% over ±30° of the scanning angle. The confusion circle induced by the parabolic mirror is 1 order of magnitude smaller than the spot size determined by diffraction limit. The tolerance of the length from the rotating mirror to the parabolic mirror for 0.1% distortion over ±30° scanning angle is 10% of focal length. This high speed laser printer has demonstrated the high quality printing of 10-dots/mm resolution.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Fleischer, M. R. Latta, M. E. Rabedeau, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper TUD1.
  2. W. Meye, RPS 1976 Electrophotography Conference (1976), E44.
  3. T. Kitamura, 1976 Joint Convention Record of Four Institutes of Electrical Engineers, Japan, No. 182 (1976).
  4. L. Beiser, Laser Applications (Academic, New York, 1974) Vol. 2, p. 53.
  5. E. Hartfield, Laser Focus 9, 47 (1973).
  6. M. J. Buzawa, R. E. Hopkins, Proc. Soc. Photo-Opt. Instrum Eng. 53, 9 (1974).
  7. F. Abe, T. Matsuda, Kogaku, Jpn. 6, 67 (1977).
  8. V. J. Fowler, Proc. Soc. Photo-Opt. Instrum. Eng. 53, 30 (1974).
  9. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, D. de la Claviére, E. A. Franke, J. M. Franke, Appl. Opt. 10, 2775 (1971).
    [CrossRef] [PubMed]

1977

F. Abe, T. Matsuda, Kogaku, Jpn. 6, 67 (1977).

1976

W. Meye, RPS 1976 Electrophotography Conference (1976), E44.

1974

V. J. Fowler, Proc. Soc. Photo-Opt. Instrum. Eng. 53, 30 (1974).

M. J. Buzawa, R. E. Hopkins, Proc. Soc. Photo-Opt. Instrum Eng. 53, 9 (1974).

1973

E. Hartfield, Laser Focus 9, 47 (1973).

1971

Abe, F.

F. Abe, T. Matsuda, Kogaku, Jpn. 6, 67 (1977).

Arnaud, J. A.

Beiser, L.

L. Beiser, Laser Applications (Academic, New York, 1974) Vol. 2, p. 53.

Buzawa, M. J.

M. J. Buzawa, R. E. Hopkins, Proc. Soc. Photo-Opt. Instrum Eng. 53, 9 (1974).

de la Claviére, D.

Fleischer, J. M.

J. M. Fleischer, M. R. Latta, M. E. Rabedeau, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper TUD1.

Fowler, V. J.

V. J. Fowler, Proc. Soc. Photo-Opt. Instrum. Eng. 53, 30 (1974).

Franke, E. A.

Franke, J. M.

Hartfield, E.

E. Hartfield, Laser Focus 9, 47 (1973).

Hopkins, R. E.

M. J. Buzawa, R. E. Hopkins, Proc. Soc. Photo-Opt. Instrum Eng. 53, 9 (1974).

Hubbard, W. M.

Kitamura, T.

T. Kitamura, 1976 Joint Convention Record of Four Institutes of Electrical Engineers, Japan, No. 182 (1976).

Latta, M. R.

J. M. Fleischer, M. R. Latta, M. E. Rabedeau, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper TUD1.

Mandeville, G. D.

Matsuda, T.

F. Abe, T. Matsuda, Kogaku, Jpn. 6, 67 (1977).

Meye, W.

W. Meye, RPS 1976 Electrophotography Conference (1976), E44.

Rabedeau, M. E.

J. M. Fleischer, M. R. Latta, M. E. Rabedeau, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper TUD1.

Appl. Opt.

Kogaku, Jpn.

F. Abe, T. Matsuda, Kogaku, Jpn. 6, 67 (1977).

Laser Focus

E. Hartfield, Laser Focus 9, 47 (1973).

Proc. Soc. Photo-Opt. Instrum Eng.

M. J. Buzawa, R. E. Hopkins, Proc. Soc. Photo-Opt. Instrum Eng. 53, 9 (1974).

Proc. Soc. Photo-Opt. Instrum. Eng.

V. J. Fowler, Proc. Soc. Photo-Opt. Instrum. Eng. 53, 30 (1974).

RPS 1976 Electrophotography Conference

W. Meye, RPS 1976 Electrophotography Conference (1976), E44.

Other

T. Kitamura, 1976 Joint Convention Record of Four Institutes of Electrical Engineers, Japan, No. 182 (1976).

L. Beiser, Laser Applications (Academic, New York, 1974) Vol. 2, p. 53.

J. M. Fleischer, M. R. Latta, M. E. Rabedeau, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper TUD1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Diagram of a laser beam scanning system of a laser printer.

Fig. 2
Fig. 2

Schematic diagram of a scanning system: (a) postobjective scanning; (b) preobjective scanning.

Fig. 3
Fig. 3

Scanning distortion and variation: (a) distortion; (b) scanning velocity distortion; (c) beam diameter variation.

Fig. 4
Fig. 4

Schematic diagram of the correcting method of beam scanning distortion using the parabolic mirror.

Fig. 5
Fig. 5

Distortion (k = ⅔).

Fig. 6
Fig. 6

Range of distortion.

Fig. 7
Fig. 7

Scanning velocity distortion (k = ⅔).

Fig. 8
Fig. 8

Circle of confusion (f = 480 mm, k = ⅔).

Fig. 9
Fig. 9

Beam diameter and focal length (λ = 0.6328 × 10−6 m).

Fig. 10
Fig. 10

Schematic diagram of experimental arrangement.

Fig. 11
Fig. 11

Experimental results of image height (static condition).

Fig. 12
Fig. 12

Experimental results of beam diameter (static condition).

Fig. 13
Fig. 13

The laser beam scanning system of a laser printer.

Fig. 14
Fig. 14

Printing sample: (a) corrected pattern with parabolic mirror; (b) uncorrected pattern with the distortion of 1/cos2θ; (c) printing sample.

Tables (1)

Tables Icon

Table I Features of Laser Printers

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

χ 0 = f tan θ ,
X = f θ .
( distortion ) = χ 0 X X × 100 ( % ) = tan θ θ θ × 100 ( % ) .
( scanning velocity distortion ) = d χ 0 / d t f ω f ω × 100 ( % ) = ( 1 cos 2 θ 1 ) × 100 ( % ) .
( beam diameter ) f f + Z D 0 ( 1 cos θ 1 ) ,
y 1 = x 2 / 4 f ,
y 2 = cot θ x + k f .
x p 1 = 2 f [ cot θ + ( cot 2 θ + k ) 1 / 2 ] ,
tan ϕ = ( d y 1 / d x ) x = x p 1 = cot θ + ( cot 2 θ + k ) 1 / 2 .
φ = ( π / 2 ) ( θ 2 ϕ ) ,
y 3 = tan φ ( x x p 1 ) + y p 1 .
x p 0 = x p 1 + tan ( θ 2 ϕ ) ( f y p 1 ) = f tan θ ( 1 + tan 2 ϕ ) 2 1 tan 2 ϕ + 2 tan θ tan ϕ .
y = cot θ ( x d 2 cos θ ) + k f ± d 2 sin θ ,
x p 1 = 2 f [ cot θ + ( cot 2 θ + k ± d 2 f sin θ ) 1 / 2 ] ,
tan ϕ = cot θ + ( cot 2 θ + k ± d 2 f sin θ ) 1 / 2 .
x p 0 = f tan θ ( 1 + tan 2 ϕ ) 2 1 tan 2 ϕ + 2 tan θ tan ϕ .
x 0 = f tan θ ( 1 + tan 2 ϕ ) 2 1 tan 2 ϕ + 2 tan θ tan ϕ ,
tan ϕ = cot θ + ( cot 2 θ + k + d / 2 f sin θ ) 1 / 2 ,
d x o d t = d x o d θ d θ d t = f ( 1 + tan 2 ϕ ) [ ( 1 + 6 tan 2 ϕ 3 tan 4 ϕ ) tan θ tan ϕ ( 1 6 tan 2 ϕ + tan 4 ϕ ) ] cos 2 θ ( 1 + tan θ tan ϕ ) ( 1 tan 2 ϕ + 2 tan θ tan ϕ ) 2 .
( circle of confusion ) = f | tan θ ( 1 + tan 2 ϕ 1 ) 2 1 tan 2 ϕ 1 + 2 tan θ tan ϕ 1 tan θ ( 1 + tan 2 ϕ 2 ) 2 1 tan 2 ϕ 2 + 2 tan θ tan ϕ 2 | ,
d 0 = 4 π f λ D ( f π d 0 2 4 λ ) ,

Metrics