Abstract

Broadly tunable cw uv radiation has been generated by frequency doubling and sum frequency mixing in ADP, ADA, and RDP, using the output of a Kr laser, a Rh6G dye laser, and an oxazine 1 dye laser. Continuous tunable uv radiation has been obtained from 285 nm to 400 nm with a maximum power of 750 μW at 313 nm and with powers in excess of 5 μW from 290 nm to 390 nm.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, in Dye Lasers, F. P. Schäfer, Ed. (Springer-Verlag, New York, 1973).
  2. C. Gabel, M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).
    [CrossRef]
  3. D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
    [CrossRef]
  4. A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
    [CrossRef]
  5. J. M. Yarborough, Appl. Phys. Lett. 24, 629 (1975).
    [CrossRef]
  6. S. Blit, E. G. Weaver, F. B. Dunning, F. K. Tittel, Opt. Lett. 1, 58 (1977).
    [CrossRef] [PubMed]
  7. K. M. Romanek, O. Hildebrand, E. Gobel, Opt. Commun. 21, 16 (1977).
    [CrossRef]
  8. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  9. F. Zernike, J. Opt. Soc. Am. 54, 1215 (1964);J. Opt. Soc. Am. 55, 210 (1965).
    [CrossRef]
  10. A. S. Vasilerskaya et al., Sov. Phys. Crystallogr. 12, 383 (1967).
  11. F. Zernike, G. E. Midwinder, Applied Nonlinear Optics, (Wiley, New York, 1973).
  12. S. K. Kurtz, in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois Eds. (North-Holland, Amsterdam1972).

1977 (2)

1976 (2)

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
[CrossRef]

1975 (1)

J. M. Yarborough, Appl. Phys. Lett. 24, 629 (1975).
[CrossRef]

1972 (1)

C. Gabel, M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1967 (1)

A. S. Vasilerskaya et al., Sov. Phys. Crystallogr. 12, 383 (1967).

1964 (1)

Blit, S.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Dunn, M. H.

A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
[CrossRef]

Dunning, F. B.

Ferguson, A. I.

A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
[CrossRef]

Frölich, D.

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

Gabel, C.

C. Gabel, M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

Gobel, E.

K. M. Romanek, O. Hildebrand, E. Gobel, Opt. Commun. 21, 16 (1977).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, in Dye Lasers, F. P. Schäfer, Ed. (Springer-Verlag, New York, 1973).

Hercher, M.

C. Gabel, M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

Hildebrand, O.

K. M. Romanek, O. Hildebrand, E. Gobel, Opt. Commun. 21, 16 (1977).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kurtz, S. K.

S. K. Kurtz, in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois Eds. (North-Holland, Amsterdam1972).

Maitland, A.

A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
[CrossRef]

Midwinder, G. E.

F. Zernike, G. E. Midwinder, Applied Nonlinear Optics, (Wiley, New York, 1973).

Romanek, K. M.

K. M. Romanek, O. Hildebrand, E. Gobel, Opt. Commun. 21, 16 (1977).
[CrossRef]

Schröder, H. W.

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

Stein, L.

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

Tittel, F. K.

Vasilerskaya, A. S.

A. S. Vasilerskaya et al., Sov. Phys. Crystallogr. 12, 383 (1967).

Weaver, E. G.

Welling, H.

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, Appl. Phys. Lett. 24, 629 (1975).
[CrossRef]

Zernike, F.

F. Zernike, J. Opt. Soc. Am. 54, 1215 (1964);J. Opt. Soc. Am. 55, 210 (1965).
[CrossRef]

F. Zernike, G. E. Midwinder, Applied Nonlinear Optics, (Wiley, New York, 1973).

Appl. Phys. (1)

D. Frölich, L. Stein, H. W. Schröder, H. Welling, Appl. Phys. 11, 97 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Yarborough, Appl. Phys. Lett. 24, 629 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Gabel, M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

K. M. Romanek, O. Hildebrand, E. Gobel, Opt. Commun. 21, 16 (1977).
[CrossRef]

A. I. Ferguson, M. H. Dunn, A. Maitland, Opt. Commun. 19, 10 (1976).
[CrossRef]

Opt. Lett. (1)

Sov. Phys. Crystallogr. (1)

A. S. Vasilerskaya et al., Sov. Phys. Crystallogr. 12, 383 (1967).

Other (3)

F. Zernike, G. E. Midwinder, Applied Nonlinear Optics, (Wiley, New York, 1973).

S. K. Kurtz, in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois Eds. (North-Holland, Amsterdam1972).

T. W. Hänsch, in Dye Lasers, F. P. Schäfer, Ed. (Springer-Verlag, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the arrangement of lasers used for SHG and SFM. M1, M2, and M3 are maximum reflectivity mirrors, and M4 is a dichroic beam splitter.

Fig. 2
Fig. 2

Calculated and experimental conversion efficiencies and phase matching angles as a function of output wavelength for SHG of Rh6G and Oxazine 1 in ADP, ADA, and RDP. Solid curves are calculated.

Fig. 3
Fig. 3

Calculated and experimental conversion efficiencies and calculated phase matching angles for SFM of Rh6G and Kr lines (1 = 676 nm, 2 = 753 nm, 3 = 799 nm) in ADP and RDP. Solid curves are calculated.

Fig. 4
Fig. 4

Experimental uv output powers as a function of output wavelength. - - - represents ADP;-·-·- represents ADA; — represents RDP; A = SHG of Rh6G; B,C,D = SFM of Rh6G and the 676-nm, 753-nm, and 799-nm lines, respectively; E = SHG of oxazine 1.

Metrics