Abstract

A new laser Doppler particle measuring method which resists additive Gaussian noises is proposed. Particles are forced-vibrated by nonsinusoidal waves with fixed bispectral characteristics, and the responses are measured by using a velocity measuring system which consists of the optics of a laser Doppler velocimeter, FM discriminator, and a bispectral analyzer. Application of bispectral analysis is very effective in eliminating additive Gaussian noise even when the power of noise is fairly large. The principle, practical construction, and some experimental results are shown. The results show clearly the effectiveness of the method.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).
  2. B. M. Watrasiewicz, M. J. Rudd, Laser Doppler Measurements (Butterworths, London, 1976).
  3. M. K. Mazumder, K. J. Kirsch, Appl. Opt. 14, 894 (1975).
    [CrossRef] [PubMed]
  4. K. J. Kirsch, M. K. Mazumder, Appl. Phys. Lett. 26, 193 (1975).
    [CrossRef]
  5. T. Sato, Y. Nakatani, M. Ueda, Appl. Opt. 16, 1263 (1977).
    [CrossRef] [PubMed]
  6. S. S. Cramer, Mathematical Statistics (Wiley, New York, 1962).
  7. D. R. Brillinger, Time Series Data Analysis and Theory (Holt, Rinehart, and Winston, New York, 1975).

1977 (1)

1975 (2)

K. J. Kirsch, M. K. Mazumder, Appl. Phys. Lett. 26, 193 (1975).
[CrossRef]

M. K. Mazumder, K. J. Kirsch, Appl. Opt. 14, 894 (1975).
[CrossRef] [PubMed]

Brillinger, D. R.

D. R. Brillinger, Time Series Data Analysis and Theory (Holt, Rinehart, and Winston, New York, 1975).

Cramer, S. S.

S. S. Cramer, Mathematical Statistics (Wiley, New York, 1962).

Durst, F.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Kirsch, K. J.

M. K. Mazumder, K. J. Kirsch, Appl. Opt. 14, 894 (1975).
[CrossRef] [PubMed]

K. J. Kirsch, M. K. Mazumder, Appl. Phys. Lett. 26, 193 (1975).
[CrossRef]

Mazumder, M. K.

K. J. Kirsch, M. K. Mazumder, Appl. Phys. Lett. 26, 193 (1975).
[CrossRef]

M. K. Mazumder, K. J. Kirsch, Appl. Opt. 14, 894 (1975).
[CrossRef] [PubMed]

Melling, A.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Nakatani, Y.

Rudd, M. J.

B. M. Watrasiewicz, M. J. Rudd, Laser Doppler Measurements (Butterworths, London, 1976).

Sato, T.

Ueda, M.

Watrasiewicz, B. M.

B. M. Watrasiewicz, M. J. Rudd, Laser Doppler Measurements (Butterworths, London, 1976).

Whitelaw, J. H.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. J. Kirsch, M. K. Mazumder, Appl. Phys. Lett. 26, 193 (1975).
[CrossRef]

Other (4)

S. S. Cramer, Mathematical Statistics (Wiley, New York, 1962).

D. R. Brillinger, Time Series Data Analysis and Theory (Holt, Rinehart, and Winston, New York, 1975).

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, New York, 1976).

B. M. Watrasiewicz, M. J. Rudd, Laser Doppler Measurements (Butterworths, London, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic construction of the system.

Fig. 2
Fig. 2

Information transformation and flow diagram of the system.

Fig. 3
Fig. 3

Signal processing for particle parameter determination.

Fig. 4
Fig. 4

Power spectra of detected signal (solid line) and background noise (dotted line).

Fig. 5
Fig. 5

(a) Bispectra of background noise; (b) detected signal.

Fig. 6
Fig. 6

Power spectrum and bispectrum of detected signal. The vertical line segments superposed on the curves indicate standard deviations of the measured values at each point.

Fig. 7
Fig. 7

Results of measurement of bispectra for smoke and water droplets.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = A 1 sin ( ω 0 t + ϕ 1 ) + A 1 sin ( 2 ω 0 t + ϕ 2 ) ,
x ( t ) = a 1 sin ( ω 0 t + ϕ 1 ) + a 2 sin ( 2 ω 0 t + ϕ 2 ) + n ( t ) ,
B ( ω 1 , ω 2 ) = a 1 2 a 2 δ ( ω 1 ω 0 ) δ ( ω 2 ω 0 ) .
Φ ( j ω ) = a 1 2 δ ( ω ω 0 ) + a 2 2 δ ( ω 2 ω 0 ) + Φ n ( j ω ) ,

Metrics