Abstract

Fiber optic sheets (8 lines/mm), applicable as image convertors in a facsimile input system, have been formed by a selective monomer photopolymerization in polymer films. In this method, the monomer is doped in a plane film with a higher refractive index and then photopolymerized selectively through a mask pattern by uv light irradiation, so that all light paths are formed simultaneously, instead of arranging individual optical fibers. The attenuation was 0.15–0.20 dB/cm at λ = 633 nm, and the output light intensity distribution formed by a test chart through light paths showed a resolution of up to ∼5 lines/mm.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
    [CrossRef]
  2. R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
    [CrossRef]
  3. H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
    [CrossRef]
  4. E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
    [CrossRef]
  5. T. Kurokawa, S. Oikawa, Appl. Opt. 16, 1033 (1977).
    [CrossRef] [PubMed]
  6. H. Nomura, T. Okada, S. Oikawa, J. Shimada, Appl. Opt. 14, 586 (1975).
    [CrossRef] [PubMed]
  7. A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

1977 (1)

1975 (1)

1974 (1)

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

1972 (2)

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

1970 (1)

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

1966 (1)

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Akutin, M. S.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Andre, G. P.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Chandross, E. A.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Ermolina, A. V.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Fork, R. L.

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Franke, E. A.

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

Igonin, L. A.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Kaminov, I. P.

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Kotrelev, V. N.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Kurokawa, T.

Nomura, H.

Oikawa, S.

Okada, T.

Pechenkin, A. A.

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Pryde, C. A.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Shimada, J.

Silfvast, W. T.

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Tomlinson, W. J.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

Ulrich, R.

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

Weber, H. P.

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

W. J. Tomlinson, I. P. Kaminov, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
[CrossRef]

R. Ulrich, H. P. Weber, E. A. Chandross, W. J. Tomlinson, E. A. Franke, Appl. Phys. Lett. 20, 213 (1972).
[CrossRef]

H. P. Weber, R. Ulrich, E. A. Chandross, W. J. Tomlinson, Appl. Phys. Lett. 20, 143 (1972).
[CrossRef]

E. A. Chandross, C. A. Pryde, W. J. Tomlinson, H. P. WeberAppl. Phys. Lett. 24, 72 (1974).
[CrossRef]

Sov. Plast. (1)

A. V. Ermolina, G. P. Andre, A. A. Pechenkin, L. A. Igonin, V. N. Kotrelev, M. S. Akutin, Sov. Plast. 3, 47 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Fiber optic sheet formation process: (a) monomer doping in a film; (b) uv light irradiation through a photomask; (c) evaporation of unreacted monomer; (d) lowering refractive index in the surface part.

Fig. 2
Fig. 2

Apparatus for monomer vapor diffusion in polymer films.

Fig. 3
Fig. 3

Time dependence on MA absorption into PCA films. MA temperature was kept constant at 17.5°C, and film temperatures were x; 23.0°C, ▵; 24.0°C, ○; 26.0°C, ●; 30.0°C.

Fig. 4
Fig. 4

The formed refractive index difference as a function of drying time, with which monomer content in films was decreased.

Fig. 5
Fig. 5

MA photopolymerization conversion in films. MA absorptions and photosensitizer density in films were 15% and 1%, respectively. Films were exposed at room temperature as follows: ●; by Hg lamp in air, ○; by N2 gas laser in air, ▵; by N2 gas laser in N2 atmosphere.

Fig. 6
Fig. 6

Cross section showing isolated light paths in a fiber optic sheet.

Fig. 7
Fig. 7

Transmission loss spectral distribution in a fiber optic sheet (—) as well as a matrix film (- -).

Fig. 8
Fig. 8

Resolution measurement apparatus. The optical ribbon film which was formed by lowering refractive index in the surface part, such as shown in step (d) in Fig. 1, was scanned along light paths with an almost constant gap (50 μm) between the output edge of the fiber optic sheet and the ribbon film edge.

Fig. 9
Fig. 9

Output light intensity distribution formed by a test pattern (2–10-line/mm densities) through light paths.

Tables (1)

Tables Icon

Table I Casting Solution Composition Used in Fiber Optic Sheet Formation

Metrics