Abstract

Exploding PbS film Q-switches in a Nd3+ glass laser produce ≈40-nsec. giant pulses. This investigation characterizes the laser giant pulse energy, over-all efficiency and ratio of giant pulse energy to total output energy as functions of flashlamp input energy, PbS film reflectivity, output mirror reflectivity, and flashlamp pulse width for both an apertured and unapertured laser. The laser emits giant pulses which contain 0.88 J and 1.8 J of energy, at an over-all efficiency of 0.086% and 0.21% for an apertured and unapertured laser, respectively, and ratios of giant pulse energy to total output energy approaching 100%. This investigation has illustrated that a laser Q-switched by a PbS exploding film can emit more energy, more efficiently, than the same laser Q-switched by a conventional Pockels cell. It is suspected that PbS is not the most efficient material; however, other material could be tested in a similar manner to determine a more optimum material.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, Nature 187, 493 (1960).
    [CrossRef]
  2. R. W. Hellworth, Advances in Quantum Electronics, J. R. Singer, Ed. (Columbia U. P., New York, 1961), p. 334.
  3. F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963).
    [CrossRef]
  4. J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963).
    [CrossRef]
  5. A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
    [CrossRef]
  6. P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
    [CrossRef]
  7. I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975).
    [CrossRef]
  8. G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964).
    [CrossRef]
  9. N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
    [CrossRef]
  10. H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
    [CrossRef]
  11. D. G. Grant, Proc. IEEE 51, 604 (1963).
    [CrossRef]
  12. J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
    [CrossRef]
  13. G. Dube, Appl. Opt. 14, 553 (1975).
    [CrossRef]
  14. These etalons are made of quartz flats. The 87% reflecting etalon has a free spectral range of 0.01 nm and spectral width of 0.0063 nm.
  15. Measured by a specially equipped Beckman spectrophotometer to be published by H. P. Davis and M. J. Landry.
  16. M. J. Landry, R. A. Langley, to be published.
  17. A. A. Vuylsteke, J. Appl. Phys. 34, 1615 (1963).
    [CrossRef]
  18. W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963).
    [CrossRef]
  19. J. E. Midwinter, Br. J. Appl. Phys. 16, 1125 (1965).
    [CrossRef]
  20. M. J. Landry, Appl. Opt. 13, 63 (1974);M. J. Landry, Sandia Laboratories, SLA 73-0347 (1973).
    [CrossRef] [PubMed]
  21. V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).
  22. A. S. Eremenko et al., Sov. J. Quantum Electron. 2, 219 (1972).
    [CrossRef]
  23. This work was performed at Sandia Laboratories, Livermore, Calif., with the assistance of C. A. Wright.

1975 (2)

I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975).
[CrossRef]

G. Dube, Appl. Opt. 14, 553 (1975).
[CrossRef]

1974 (1)

1972 (1)

A. S. Eremenko et al., Sov. J. Quantum Electron. 2, 219 (1972).
[CrossRef]

1967 (1)

V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).

1965 (3)

J. E. Midwinter, Br. J. Appl. Phys. 16, 1125 (1965).
[CrossRef]

N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
[CrossRef]

H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
[CrossRef]

1964 (2)

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964).
[CrossRef]

1963 (7)

A. A. Vuylsteke, J. Appl. Phys. 34, 1615 (1963).
[CrossRef]

W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963).
[CrossRef]

F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963).
[CrossRef]

J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963).
[CrossRef]

A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
[CrossRef]

D. G. Grant, Proc. IEEE 51, 604 (1963).
[CrossRef]

J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
[CrossRef]

1960 (1)

T. H. Maiman, Nature 187, 493 (1960).
[CrossRef]

Barnard, G.

A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
[CrossRef]

Bret, G.

G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964).
[CrossRef]

De Maria, A. J.

A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
[CrossRef]

Dube, G.

Eremenko, A. S.

A. S. Eremenko et al., Sov. J. Quantum Electron. 2, 219 (1972).
[CrossRef]

French, P. W.

N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
[CrossRef]

Gagosz, R.

A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
[CrossRef]

Gandy, H. W.

H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
[CrossRef]

Ginther, R. J.

H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
[CrossRef]

Gires, F.

G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964).
[CrossRef]

Grant, D. G.

D. G. Grant, Proc. IEEE 51, 604 (1963).
[CrossRef]

Hantouni, E.

J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
[CrossRef]

Hellworth, R. W.

F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963).
[CrossRef]

R. W. Hellworth, Advances in Quantum Electronics, J. R. Singer, Ed. (Columbia U. P., New York, 1961), p. 334.

Hirayama, C.

N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
[CrossRef]

Kalinin, V. P.

V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).

Korda, I. M.

I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975).
[CrossRef]

Lamkard, J. R.

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

Landry, M. J.

Langley, R. A.

M. J. Landry, R. A. Langley, to be published.

Langyel, B. A.

W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963).
[CrossRef]

Luzzi, J. J.

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

Lyubiniov, V. U.

V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).

Maiman, T. H.

T. H. Maiman, Nature 187, 493 (1960).
[CrossRef]

Masters, J. I.

J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963).
[CrossRef]

J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
[CrossRef]

McClung, F. J.

F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963).
[CrossRef]

Melamed, N. T.

N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, Br. J. Appl. Phys. 16, 1125 (1965).
[CrossRef]

Petit, G. D.

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

Rubinov, A. N.

I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975).
[CrossRef]

Sorokin, P. P.

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

Vuylsteke, A. A.

A. A. Vuylsteke, J. Appl. Phys. 34, 1615 (1963).
[CrossRef]

Wagner, W. G.

W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963).
[CrossRef]

Ward, J.

J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
[CrossRef]

Ward, J. H.

J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963).
[CrossRef]

Weller, J. F.

H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964).
[CrossRef]

N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965).
[CrossRef]

H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965).
[CrossRef]

Br. J. Appl. Phys. (1)

J. E. Midwinter, Br. J. Appl. Phys. 16, 1125 (1965).
[CrossRef]

IBM J. Res. Dev. (1)

P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964).
[CrossRef]

J. Appl. Phys. (3)

A. A. Vuylsteke, J. Appl. Phys. 34, 1615 (1963).
[CrossRef]

W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963).
[CrossRef]

A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963).
[CrossRef]

Nature (1)

T. H. Maiman, Nature 187, 493 (1960).
[CrossRef]

Opt. Spectrosc. (1)

V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).

Proc. IEEE (3)

F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963).
[CrossRef]

J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963).
[CrossRef]

D. G. Grant, Proc. IEEE 51, 604 (1963).
[CrossRef]

Rev. Sci. Instrum. (1)

J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963).
[CrossRef]

Sov. J. Quantum Electron. (2)

I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975).
[CrossRef]

A. S. Eremenko et al., Sov. J. Quantum Electron. 2, 219 (1972).
[CrossRef]

Other (5)

This work was performed at Sandia Laboratories, Livermore, Calif., with the assistance of C. A. Wright.

These etalons are made of quartz flats. The 87% reflecting etalon has a free spectral range of 0.01 nm and spectral width of 0.0063 nm.

Measured by a specially equipped Beckman spectrophotometer to be published by H. P. Davis and M. J. Landry.

M. J. Landry, R. A. Langley, to be published.

R. W. Hellworth, Advances in Quantum Electronics, J. R. Singer, Ed. (Columbia U. P., New York, 1961), p. 334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The basic Pockels cell Q-switched Nd3+ laser configuration. Two other laser back ends, to the left of section AA of (a), is also being used. (b) The TIR knife-edge prism is used with the PbS film deposited on the right angle side containing the knife-edge or onto a microscope cover slide which is placed in optical contact with this prism side. (c) The right-angle prism is used with the PbS film deposited onto the hypotenuse side of the prism. The components are: M1 and M2—mirrors; P1 and P2—polarizers; PC—Pockels cell; A1—aperture; ROD—Nd3+ glass laser rod; FL—flashlamp.

Fig. 2
Fig. 2

The energy in the giant pulses (Eq) at threshold is plotted as a function of PbS film percent reflectivity deposited on the right-angle prism when a 27% etalon is used in an apertured laser. The data points labeled M are for maximum energy observed in the giant pulse.

Fig. 3
Fig. 3

The energy in the giant pulse (Eq) for six different PbS film reflectivities deposited on a right-angle prism is plotted as functions of output mirror percent reflectivity of an apertured laser. These are for the maximum values of Eq.

Fig. 4
Fig. 4

The over-all percent efficiency () for generating a giant pulse is plotted as a function of PbS film percent reflectivity deposited on the right-angle prism for an apertured laser. Data taken for the 27% reflecting etalon are illustrated for threshold and maximum energy contained in the giant pulse.

Fig. 5
Fig. 5

The energy in the giant pulse (Eq) and the over-all percent efficiency () are plotted as functions of PbS film percent reflectivity deposited on a right-angle prism and a TIR knife edge prism when an 87% etalon is used in an apertured laser. These are for the maximum values of Eq.

Fig. 6
Fig. 6

The energy in the giant pulse (Eq) and the over-all percent efficiency () are plotted as functions of PbS film percent reflectivity deposited on a right-angle prism and a TIR knife-edge prism when an 87% etalon is used. No aperture is used. The data are for maximum values of Eq.

Fig. 7
Fig. 7

The energy in the giant pulse (Eq) the input energy required to produce this energy, and the over-all percent efficiency () for generating the giant pulse are plotted as functions of flashlamp current pulse width. An 87% etalon and 21% reflecting film are used except for 125 μsec when a 27% reflecting film was used. The laser is unapertured, and maximum values of Eq are used.

Fig. 8
Fig. 8

The spatial and temporal intensity distributions of the laser and plasma pulses are illustrated. (a) indicates the spatial intensity distribution of the plasma formed when the PbS film ionizes. (b) illustrates temporal shapes of the giant pulse and plasma luminosity pulse when the giant pulse approached a Gaussian distribution.

Fig. 9
Fig. 9

Laser output energies using a TIR knife-edge prism, a right-angle prism combination, or a TIR corner-cube prism are plotted as functions of input energy for long pulse lasing. A stacked glass polarizer is used. The laser Q-switch output using a Pockels cell is also illustrated for comparison. An 87% etalon is used.

Tables (1)

Tables Icon

Table I Laser Characteristics

Metrics