Abstract

A parametric analysis of the Shuttle-borne differential absorption lidar concept for the measurement of atmospheric trace constituent profiles in the nadir viewing mode is presented. The criterion of an optimum constituent optical depth is developed and applied to generate estimates of range resolved measurement errors. These errors emphasize the fundamental limitations for establishing the feasibility of range-resolved differential absorption lidar measurements from Shuttle. With current lidar system technology, atmospheric backscatter density profiles may be adequately determined up to about 60-km altitude at the doubled-ruby wavelength, 3472 Å, for a 1-J/pulse laser and a 1-m2 receiver. Potential range-resolved measurements of stratospheric and mesospheric trace constituents by differential absorption from Shuttle altitudes are limited to H2O, CH4, N2O, O3, and CO, species which can be more easily measured by passive limb viewing techniques. Range-resolved water vapor data for the lower troposphere may be obtained with accuracies which would be competitive with those from passive sensors. Technology advances in laser power and efficiency and in heterodyne detectors may allow other tropospheric species measurements from Shuttle in the future.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).
  2. C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).
  3. R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  4. H. Kildal, R. L. Byer, Proc. IEEE1644 (1971).
    [CrossRef]
  5. R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627, Old Dominion U., Norfolk, Va. (August1976).
  6. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  7. T. G. Blaney, Space Sci. Rev. 17, 691 (1975).
    [CrossRef]
  8. H. Inaba, T. Kobayasi, Opt. Commun. 14, 119 (1975).
    [CrossRef]
  9. R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).
  10. E. E. Remsberg, G. B. Northam, in Atmospheric Aerosols: Their Optical Properties and Effects (1976).Available from NTIS, Springfield, Va. as NASA CP-2004.

1976

E. E. Remsberg, G. B. Northam, in Atmospheric Aerosols: Their Optical Properties and Effects (1976).Available from NTIS, Springfield, Va. as NASA CP-2004.

1975

T. G. Blaney, Space Sci. Rev. 17, 691 (1975).
[CrossRef]

H. Inaba, T. Kobayasi, Opt. Commun. 14, 119 (1975).
[CrossRef]

1974

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1973

1971

H. Kildal, R. L. Byer, Proc. IEEE1644 (1971).
[CrossRef]

Blaney, T. G.

T. G. Blaney, Space Sci. Rev. 17, 691 (1975).
[CrossRef]

Byer, R. L.

Ellingson, R.

R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).

Garbuny, M.

Gasiorek, L. S.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).

Inaba, H.

H. Inaba, T. Kobayasi, Opt. Commun. 14, 119 (1975).
[CrossRef]

Kildal, H.

H. Kildal, R. L. Byer, Proc. IEEE1644 (1971).
[CrossRef]

Kobayasi, T.

H. Inaba, T. Kobayasi, Opt. Commun. 14, 119 (1975).
[CrossRef]

Lapp, M.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Liston, E. M.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).

Mcllrath, T.

R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).

Morey, W. W.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Northam, G. B.

E. E. Remsberg, G. B. Northam, in Atmospheric Aerosols: Their Optical Properties and Effects (1976).Available from NTIS, Springfield, Va. as NASA CP-2004.

Penney, C. M.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Peters, R. L.St.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Proctor, E. K.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).

Remsberg, E. E.

E. E. Remsberg, G. B. Northam, in Atmospheric Aerosols: Their Optical Properties and Effects (1976).Available from NTIS, Springfield, Va. as NASA CP-2004.

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Schwemmer, G.

R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).

Silverstein, S. D.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Thompson, R. T.

R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627, Old Dominion U., Norfolk, Va. (August1976).

White, D. R.

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Wilkerson, T. D.

R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).

Wright, M. L.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).

Appl. Opt.

Atmospheric Aerosols: Their Optical Properties and Effects

E. E. Remsberg, G. B. Northam, in Atmospheric Aerosols: Their Optical Properties and Effects (1976).Available from NTIS, Springfield, Va. as NASA CP-2004.

J. Appl. Meteorol.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Opt. Commun.

H. Inaba, T. Kobayasi, Opt. Commun. 14, 119 (1975).
[CrossRef]

Proc. IEEE

H. Kildal, R. L. Byer, Proc. IEEE1644 (1971).
[CrossRef]

Space Sci. Rev.

T. G. Blaney, Space Sci. Rev. 17, 691 (1975).
[CrossRef]

Other

R. T. Thompson, Differential Absorption and Scattering Sensitivity Predictions, NASA CR-2627, Old Dominion U., Norfolk, Va. (August1976).

R. Ellingson, T. Mcllrath, G. Schwemmer, T. D. Wilkerson, Water Vapor Lidar, Technical Note BN-816, U. Maryland, College Park (January1976).

M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, A Preliminary Study of Air Pollution by Active Remote Sensing Techniques, Final Report, NAS1-11657, Stanford Research Institute, Menlo Park, Calif, NASA CR-132724 (June1975).

C. M. Penney, W. W. Morey, R. L.St. Peters, S. D. Silverstein, M. Lapp, D. R. White, Study of Resonance Light Scattering for Remote Optical Probing, Final Report, NAS1-11624, General Electric Company, Schenectady, N.Y., NASA CR-132363 (September1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Aerosol number density profiles for two Deirmendjian haze models.

Fig. 2
Fig. 2

Error in single shot off-line returns Eoff as a function of wavelength and altitude for the lidar system parameters in Table I.

Fig. 3
Fig. 3

Geometry for a range-resolved differential absorption measurement. Symbols are defined in Eqs. (1) and (4).

Fig. 4
Fig. 4

The domain of optimum optical depth τ with respect to system error as determined from the solution of Eq. (20) for a range of D and K parameters. For a system error EQ equal to zero, τ = 1.10−1.70.

Fig. 5
Fig. 5

The coefficient of KEoff in Eq. (23) as a function of total optical depth τ for the domain of K and for D = 1. The minimum coefficient occurs at τ = 1.1.

Fig. 6
Fig. 6

Optimum concentration error Em for a constituent having τ = 1.1 and a constant mixing ratio profile (see text). The hatched area represents regions where errors do not exceed 10% for the system defined in Table I and for an average of 100 laser returns.

Tables (2)

Tables Icon

Table 1 System Parameters

Tables Icon

Table II Optimum Cross Sections for Monitoring Stratospheric Species by DIAL from Shuttle

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

P = J λ β A H T 2 h R 2 exp [ 2 0 R ( ξ + σ ρ ) d R ] ,
E off ( % ) = 100 ( P off ) 1 / 2 .
E D ( % ) = ( P D P S ) × 100 ,
2 R 1 R 2 ρ Δ σ d r = ln ( P 22 P 11 P 12 P 21 ) + ln ( β 12 β 21 β 11 β 22 ) 2 R 1 R 2 ( ξ 1 ξ 2 ) d r ,
R 1 R 2 σ ρ d r = 1 2 ln ( P 22 P 11 P 12 P 21 ) .
P i j = ( S i j S n ) / Q .
R 1 R 2 σ ρ d r = 1 2 ln [ ( S 22 S n ) ( S 11 S n ) ( S 21 S n ) ( S 12 S n ) ] ,
( δ ρ ) 2 = ( 1 2 σ Δ R ) 2 i = 1 2 j = 1 2 ( δ S i j ) 2 + ( δ S n ) 2 ( S i j S n ) 2 ,
( δ ρ ) 2 = ( 1 2 σ Δ R ) 2 i = 1 2 j = 1 2 [ ( δ P i j ) 2 P i j 2 + ( δ Q Q ) 2 ] .
( δ ρ ) 2 = 1 N ( 1 2 σ Δ R ) 2 i = 1 2 j = 1 2 ( 1 P i j + E Q 2 ) .
( δ 0 R ρ σ d r ) 2 = 1 4 N i = 1 2 ( 1 P i + E Q 2 ) .
τ = 0 R ρ σ d r ,
E m = ( 100 δ τ ) / τ .
E m 2 = 100 2 4 N τ 2 ( e 2 τ P 2 + 1 P 2 + 2 E Q 2 ) .
τ = 1 + exp ( 2 τ ) ( 1 + 2 P 2 E Q 2 ) .
E m 2 = 100 2 4 N l 2 i = 1 2 j = 1 2 ( 1 P i j + E Q 2 ) ,
R 1 R 2 ρ Δ σ d r
D = P 22 P 21 = R 1 2 R 2 2 exp [ 2 R 1 R 2 ( ξ + σ off ) d r ] ,
P 11 = P 21 exp [ 2 ( K 1 ) l ] ,
P 12 = P 22 exp ( 2 K l ) .
E m 2 = 100 2 4 P 22 N l 2 × ( D { 1 + exp [ 2 ( K 1 ) l ] } + 1 + exp ( 2 K l ) + 4 P 22 E Q 2 ) .
l = ( [ 1 + exp ( 2 K l ) ] + D { 1 + exp [ 2 ( K 1 ) l ] } + 4 P 22 E Q 2 D ( K 1 ) exp [ 2 ( K 1 ) l ] + K exp ( 2 K l ) ) .
E m = 100 C K ( P 22 N ) 1 / 2 ,
1 2 τ { 2 + exp ( 2 τ ) + exp [ 2 ( K 1 ) l ] } 1 / 2 .
E m = C K E off .
E m = 2 K E off .
E m = 4 K E off .
E m = 10 E off .
z 200 km ( ρ σ ) d z

Metrics